Characteristics and Propagation of Short-duration Voltage Events

Mekelle Institute of Technology, Ethiopia
Outline

- Introduction
- Main objectives
- Methodology
- Results and Discussion
- Conclusion
Introduction

Power quality (PQ) - any power problem manifested in voltage, current and/or frequency deviations resulting in

- Damage of customer devices, processes, systems, installations, or
- Mis-operation of customer equipment
- Stoppage or slowing down of processes
- Economic damage of customers

- PQ includes
 - Transients
 - Short-duration voltage variations
 - Long-duration voltage variations
 - Voltage imbalance
 - Waveform distortion
 - Voltage fluctuations
 - Power frequency variations
Introduction

PQ responsibility sharing

Grid operators
- Responsible for defining minimum quality of supply in standards and regulations
- State requirements in contract agreement

Customers
- have processes, installation& equipment
- Responsible for choosing the robustness of processes, installation and equipment
- Responsible for impact of voltage disturbances expected from their installations, and quality of current withdrawals on other customers.

Manufacturers
- develop and supply equipment with adequate voltage quality and cost-effective power conditioning devices.
Introduction

- **Short-duration voltage events** – the temporary increase/reduction in RMS voltage outside a specified limit (or value) followed by quick recovery to the acceptable voltage level.
Introduction

Short-duration voltage events – include voltage dips, voltage swells and short-interruption.

- **Voltage dip** – when remaining voltage is between 90 – 5% of nominal voltage for a duration between ½ cycle to 1 minute.
- **Short-interruption** – when remaining voltage is falls below 5% of nominal voltage for a duration between ½ cycle to 1 minute.
- **Voltage swell** – when voltage rises above 110% for a duration between ½ cycle to 1 minute.

Cause: mainly (unpredictable) faults
Effects: financial & technical impacts to industrial customers
Objectives

• Study the characteristics of short-duration voltage events
• Identify the causes of short-duration events by the characteristics
• Study the propagation of short-duration voltage events on the same voltage level
• Study the transfer of short-duration volatge events in different voltage levels
Methodology

Network Under Study

- HV, MV and LV network
- Disturbances by short-circuit faults, connection of loads and transformer excitation
- Characteristics, propagation and transfer
- Depends on cable types and length, system grounding, fault types, protection, fault location and point of observation
Results

Characteristics of short-duration voltage events

(a) Caused by short-circuit faults

Typical characteristics
- at least two-transition
- a during-event segment
Results (2)

Characteristics of short-duration voltage events
(b) Caused by transformer excitation

Typical characteristics
• One–transition segment when slowly recovering
• Don’t include clear during-event segment
Results (3)

Characteristics of short-duration voltage events
(c) Caused by connection of heavy loads

![Graph showing voltage (pu) over time](image)

Typical characteristics
- One –transition segment when slowly recovering
- Don’t include clear during-event segment
Results (4)

Propagation of voltage events

Faults	Voltage (pu) at POO\text{s}	BB5	BB6	BB3	BB1
SPGF at BB4 | 0 | 0 | 0.32 | 0.96
DPGF at BB4 | 0 | 0 | 0.58 | 0.98
DPF at BB4 | 0 | 0 | 0.61 | 0.98
3PF at BB4 | 0 | 0 | 0.63 | 0.99
Transfer of voltage events

Example:
Transfer of voltage events due to LG fault in the HV to MV and LV network
Conclusion

• By analyzing the shape of RMS voltages at the PCC, DSOs can get quick estimation about the source of voltage events for finding solutions.

• Looking into the characteristics of voltage events provides better and detailed information about the occurring events for describing the event in more descriptive parameters.

• Effects of fault location and transformer between voltage levels on the propagation and transfer voltage events are studied.
 ✓ Line-line voltage characteristics in MV become phase-ground voltage characteristics after Dyn transformer in LV network
 ✓ The closer the fault location to the point of connection (POC), the most severe its impact on the customers connected to that POC.
 ✓ Effects of disturbances in lower voltage networks reduces as they propagate to higher voltage networks
Acknowledgment

This work is part of the research project on ‘Power Quality Assessment in Ethiopia’ which is

• being conducted by a team of researchers at Mekelle University together with experts from Ethiopian Electric Power (EEP), Ethiopian Electric Utility (EEU) and other stakeholders,

• sponsored by The Applied Research Program on Energy and Economic Growth (EEG) led by the Oxford Policy Management (OPM) and funded by the UK department for International Development.
Thank you

Contact: leake.enquay@mu.edu.et