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Abstract

Fiscal challenges pervade the electricity sector in many developing countries. Low
bill payment and high theft mean utility customers have little incentive to conserve.
It also means electricity distribution companies have less to invest in infrastructure
maintenance, modernization, and technical upgrades. The resulting low quality elec-
tricity services can impair economic benefits from connections to the electrical grid.
Using differences in intervention timing across space, we study the impacts of an
infrastructural intervention that made illegal electricity connections physically more
difficult in Karachi, Pakistan. We find that this infrastructure improvement reduced
non-technical losses, increased revenue recovery, and led to lower electricity delivered
to the distribution system, a proxy for generation. This translates into a reduction in
CO2 emissions that is between 0.10% to 1.19% of Pakistan’s emissions within a year.
Losses fall due to an increase in formal utility customers and greater billed consump-
tion among the existing formal customers. Consumers report fewer service outages,
as well as greater appliance ownership and use after the infrastructure upgrade. The
improvement in infrastructure also provided the utility with some technical resilience
to the disruptions caused by the COVID-19 pandemic, protecting against an uptick in
non-technical losses.
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1 Introduction

Fiscal challenges pervade the electricity sector in many countries. Electric power and dis-

tribution losses – losses between the points of electricity generation and the distribution

companies’ end-consumers – are substantial contributors to the sector’s problems. These

losses disproportionately affect utilities in low-income and lower-middle-income coun-

tries1 and have important ramifications for the environment and development. First,

the higher the losses, the more electricity must be generated per unit delivered to end-

consumers. Further, non-technical losses – electricity theft and bill non-payment – mean

people are not paying the full cost of electricity services consumed, which reduces their

incentives to conserve. When electricity generation is dominated by fossil fuels, as in Pak-

istan, these factors translate into higher CO2 emissions, which have negative implications

for the environment.

Even before accounting for the costs to society of excess CO2 emissions, these losses

are crippling. Non-technical losses are estimated to cost utilities $96 billion per year

worldwide (Bellero, 2017). These losses lead to unreliable electricity service delivery

via load shedding (Burgess et al., 2020) and result in fewer investments in infrastructure

maintenance, modernization, and technical upgrades. Further, unreliable and poor qual-

ity electricity services can limit the benefits from electrical grid connections (Pargal and

Ghosh Banerjee, 2014; Samad and Zhang, 2016; Timilsina, Sapkota and Steinbuks, 2018;

Meeks et al., 2022). An estimated 1 billion people worldwide receive electricity through

grids that provide services with frequent outages and voltage fluctuations (World Bank,

2020). Unreliable electricity service is particularly problematic in South Asia, a region that

has more power outages than anywhere else in the world (Zhang, 2018).

We study the effects of one infrastructure improvement, aerial bundled cables (ABCs),

in Karachi, Pakistan. ABCs are an expensive upgrade from basic bare electrical wires,

1Losses are approximately three times higher in low-income and lower-middle-income countries, at 16
and 18% respectively, than those in high-income countries (IEA/OECD, 2018).

1



which are cheap but also exposed and easily tapped by illegal connections. With ABCs,

the cables are twisted together and insulated, characteristics that impede ”weathering,

abrasion, tearing, cutting, and chemicals” and make illegal connections to the distribu-

tion system more difficult (USAID, 2009). Karachi Electric (KE), the power utility com-

pany serving the greater Karachi area, introduced ABCs within its distribution network

starting in 2015 in an effort to reduce losses. Conversions to ABC wiring increased in

intensity during 2018, when KE adopted the strategy of targeting high and very high loss

feeder lines. The installation work typically began by gathering community support to

carry out ABC conversion at the Pole Mounted Transformers (PMTs) level. Once instal-

lations began, a ring fencing strategy was used in order to convert the closest PMTs to

ensure complete geographical coverage of ABCs within a feeder line.

Pakistan provides a suitable location to study both electricity losses and carbon emis-

sions from electricity generation. As of 2014, electric power transmission and distribution

losses in the country were an estimated 17% of output (EIA-OEA, 2018). The National

Power and Regulatory Authority (NEPRA) reports that in 2019-20, all 10 major distribu-

tion companies faced losses above 9%, with all but 4 reporting losses above 15%. Karachi

Electric, the distribution company we study reported transmission and distribution losses

of 19.1%, allowing substantial room for reductions. With 63% of electricity generation, as

of 2015, from oil, gas, and coal sources (EIA-OEA, 2018), these losses contribute to CO2

emissions within the country.

We use differences in the introduction of this infrastructure upgrade across Karachi

over time to measure its effects on economic and environmental outcomes relevant to

both the electricity utility and its customers. For the utility, we estimate the impacts of

ABCs on two important measures of financial health, losses and revenue recovery, using

a feeder level monthly panel dataset that covers the period between January 2018 to late

2020. With the exogenous shock of COVID-19 in early 2020, we also assess the extent

to which ABCs helped mitigate the pandemic’s impacts on these outcomes. Further, we
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investigate whether impacts on losses translate into changes in carbon emissions due to

effects on the quantity of electricity generated.

On the consumer-side, we estimate customer responses to ABCs using individual

residential customer-level panel data on billing-related outcomes over the same time pe-

riod. We also use cross-sectional survey data, which we collected in Fall 2021, for these

same utility customers, to complement the utility’s administrative data and better under-

stand consumer responses. Given electricity expenditures likely comprise a larger pro-

portion of lower-income households’ overall expenditures, we also assess whether ABCs

had different impacts for the poorest households in comparison to the less-poor.

Our analysis provides a number of key findings on the impacts of electricity distri-

bution infrastructure improvements. First, the installation of ABCs reduced losses and

increased revenue recovery. The conversion of distribution lines to ABCs had the great-

est impacts on losses (revenue recovery) in the feeders with the highest losses (lowest

revenue recovery) prior to the intervention. These results indicate not only that ABCs

improved on financial measures, but that gains were highest for areas that were the worst

performing prior to the intervention. We find that the number of formal utility customers

significantly increased with ABC installation. The timing of that increase, a few months

following ABC installation, suggests that households previously using illegal connections

learned relatively quickly that their prior method of accessing grid electricity was less fea-

sible.

Second, the ABC roll-out appears to have provided some technical resilience to the

disruptions caused by the COVID-19 pandemic. Losses, which are a function of the tech-

nical infrastructure, appear not to have been effected by the pandemic in feeders with

ABCs (relative to those without ABCs). This suggests that the pandemic did not lead to

an uptick in theft in areas with ABC wiring. Revenue recovery, which is a function of

consumers’ ability to pay bills, however was impacted by the onset of the pandemic even

in areas in which ABCs were installed. Together these suggest that the ABCs increased
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utility resilience to electricity theft, but not bill non-payment.

In addition to ABC installations growing the number of formal utility customers,

they also led to meaningful changes among the utility’s residential consumers. Residen-

tial consumers responded to ABC installations with significant increases in both billed

units (kWh) and the billed monetary amount, as well as reductions in documented theft

and irregular billing. Our household surveys permit a better understanding as to how

these intensive margin changes in theft influenced residential consumers. Customers in

areas with ABCs report experiencing significantly fewer blackouts (locally known as load

shedding) than areas without ABCs and, consistent with that, these households also have

more appliances and a greater number of reported hours of appliance use per day. How-

ever, even with this better electricity service quality, these households are no more likely

to report trusting the utility; in fact, they are significantly less likely to believe their elec-

tricity bills accurately reflect their consumption.

Lastly, although ABCs led to an increase in both the total number of utility customers

and billed units (kWh) per customer, we find evidence that electricity generation (prox-

ied by electricity transmitted to feeder lines within the distribution system) decreased

following ABC installation. Using this estimated reduction in electricity ”sent out”, along

with our calculations of the CO2 emissions associated with Pakistan’s electricity genera-

tion mix, we find that the reduction in CO2 emissions per year from ABC installations is

equivalent to between 0.10% and 1.19% of the country-wide emissions within a year.

In estimating the impacts of ABCs on the utility’s non-technical losses and revenue

recovery, the paper contributes to a literature on public sector financing (Pomeranz, 2015;

Kumler, Verhoogen and Frı́as, 2020; Khan, Khwaja and Olken, 2016; Carrillo, Pomeranz

and Singhal, 2017), as well as more targeted research on improving the finances of elec-

tricity and water utilities (Szabó and Ujhelyi, 2015; McRae, 2015a; Jack and Smith, 2020;

Ali, Gaibulloev and Younas, 2018). Our paper is the first to provide evidence on the im-

pacts of ABCs, which can help control electricity losses in contexts where smart metering
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or prepaid metering might be difficult to implement due to customer and employee re-

sistance.

In line with earlier literature (see, Meeks et al., 2022), we show that infrastructure

improvements increase service reliability – in this case via load shedding – and lead to

an increase in bill payments. However, although diminished, losses do persist. Further,

the improvements do not translate into increased trust in utility or confidence in billing.

These findings emphasize the need for further work to understand determinants of will-

ingness to pay in contexts where electricity (and other basic utilities) is subsidized.

In addition to finding positive impact on utility finances and reduction in load shed-

ding, our results highlight an additional channel through which such programs can be

beneficial. Specifically we find that ABCs have a positive environmental externalities.

The rest of the paper proceeds as follows. Section 2 provides background informa-

tion on electricity distribution in Karachi, recent infrastructure improvements, as well as

information on COVID-19 and its role in electricity service delivery. Section 3 details the

data, both from Karachi Electric and from our household survey, employed in our anal-

yses. Section 4 describes the empirical models underpinning our estimations. Section

5 presents results on the impacts of ABCs on utility-level outcomes, while Section 6 ad-

dresses the consumer response to their installation. We extend the analysis to illustrate

the implications for CO2 emissions and climate change in Section 7. Section 8 concludes.

2 Background on Electricity in Pakistan

2.1 Electricity Sector in Pakistan and Generation

Pakistan’s power sector has long been beset with enormous challenges, frustrating the

core goals of providing affordable and reliable electricity (Younas and Ali, 2021). High

per unit production costs, overburdened infrastructure, unsustainable transmission and

distribution losses, intermittent load shedding, and growing circular debt are some of
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the major problems due to which the sector is trapped in a sub-optimal equilibrium. Al-

though the power sector underwent major reforms such as allowing independent private

producers, unbundling the monolithic utility company, establishing a regulatory entity,

and offering a generous subsidies program, the country has continued to suffer from fre-

quent blackouts.2

Given these challenges, cost efficiency of all three segments – generation, transmis-

sion and distribution – is an essential prerequisite for achieving the desired goals of re-

liable and affordable availability of electricity. In this paper, we focus on the the issue

of transmission and distribution (T&D) losses, which were as high as 19.1% for Karachi

Electric in 2019 (NEPRA, 2021).

T&D losses have been exacerbated by the outdated transmission infrastructure from

the powerhouse to the customers. High T&D losses due to rampant theft of electricity

and non-payment of bills take a heavy toll on the balance sheets of the utility companies.

As a result of the financial crunch, they are unable to make significant investments in

infrastructure upgrades.3

From an environmental perspective, Pakistan’s high-cost and largely non-renewable

generation mix means that any reduction in generation would yield both lower costs and

CO2 emissions. As of June 2021, the share of the installed capacity due to non-renewable

sources stood at close to 70%.4

2Bacon (2019) provides excellent anecdotal analysis of the various power sector reform initiatives in
Pakistan and challenges thereof.

3Studying the effect of a unique reward-reprimand policy in curbing losses by Karachi Electric, Ali,
Gaibulloev and Younas (2018) find that the policy was successful in reducing average monthly distribu-
tional losses across and within feeders by 3.1% to 6.6%.

4Renewable energy power plants (hydel, wind, solar and bagasse) in the generation mix was around
30% with 12,062 MW, while the share of non-renewable thermal power plants (gas, oil, coal and nuclear)
was around 70% with 27,711 MW (NEPRA, 2021). During fiscal year 2020-21, the share of gas, Regasified
Liquefied Natural Gas (RLNG), Residue Furnace Oil (RFO), coal and High-Speed Diesel (HSD) based gen-
eration in total thermal generation stood at 20.20%, 35.82%, 11.96%, 31.59% and 0.45%, respectively. The
heavy reliance on thermal generation would clearly be contributing to the environmental pollution due to
the release of CO2 from the burning of fossil fuel and contamination of waterways due to the waste water
discharged by power plants (NEPRA, 2021).
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2.2 Electricity Distribution in Karachi

The context of our research is electricity distribution in the city of Karachi, which is the

largest and most densely populated city in Pakistan. KE, which is a vertically integrated

and privately-owned power utility is the sole provider of electricity services in Karachi.

The utility has a distribution network spanning an area of 6500 square kilometers, cover-

ing 2.5 million customers including residential, commercial, industrial, and agricultural

consumers.

This distribution network is divided into local offices, known as Integrated Busi-

ness Centers (IBCs), which handle electricity distribution, billing, and collection in their

respective areas. Out of a total of 30 IBCs within the utility’s network, 12 IBCs are catego-

rized as high loss with average distribution losses exceeding 30% and bill payment rates

below 80%. These areas have a large fraction of lower income customers residing in semi-

formal to informal settlements. ”Kundas” or illegal connections to the main electricity

cables are a common sight in many communities.5

One of the key challenges in high loss IBCs is a culture of non-payment of electricity

bills, which is a product of local political, economic, and social conditions (Ahmad et al.,

2021). There are some pockets in the city with particularly poor law enforcement where it

is difficult to remove illegal connections or disconnect defaulters due to the influence of

local mafias. There are many other communities where it is acceptable to use electricity

through temporary ”kundas,” which are put in place at night especially in the hot sum-

mer season and are removed early in the morning to avoid detection. Historically, KE

also installed temporary informal connections to extend the network to commercial es-

tablishments and residential complexes where service did not exist. Later these ”kundas”

became difficult to take down due to local resistance. In addition to illegal usage, many

5The local distribution infrastructure typically consists of a sub-station (receiving electricity from the
grid station), a 11 Kv feeder line carrying electricity from the sub-station to a pole mounted transformer
(PMT) and low-tension cables (220-440V) carrying electricity from the PMT to the customers. A ”kunda” is
usually hooked on the low-tension cables originating from the PMT.
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of the consumers connected through formal connections, find it difficult to pay their bills

fully and on time, as they are employed in daily wage work, low skilled jobs, and small

businesses, and thus face fluctuating economic conditions.

Another challenge is that consumers have low trust in the utility to deliver reliable

and affordable electricity services. High loss areas face up to 6 to 7.5 hours of planned

outages daily. Unplanned outages due to infrastructure faults are also not uncommon.

There is a common perception of over-billing by KE due to faulty meters and billing

errors. Thus, the everyday experience of electricity service provision in the high loss areas

is far from ideal. Low trust in the utility and the acceptability of using electricity without

paying for it, leads to a vicious cycle of high electricity and financial losses, overloaded

infrastructure, and unreliable electricity services.

2.3 Infrastructure Improvements: Aerial Bundled Cables

In an effort to decrease illegal electricity usage, the main infrastructure initiative launched

by KE was the conversion of cables at the Pole Mounted Transformer (PMT) level to Aerial

Bundled Cables (ABCs). Due to their intertwined cable design, ABCs are difficult to con-

nect to using ”kundas”. ABC conversion began in 2015 as pilot intervention in a handful

of PMTs, and was then expanded to a few IBC regions in Karachi.

There are two factors affecting the roll-out of ABC conversion. First, it is determined

by KE’s business strategy. Initially, ABC budgets were set by strategic department which

included targets for the number of PMTs which had to be converted to ABC. Since a ma-

jor part of the ABC Project was outsourced, these budgets were specifically set keeping

in view the execution capacity of outsourced manpower. Those selected PMTs were con-

sidered as low hanging fruit to serve as proof of concept and to simultaneously allow KE

to gain quick recoveries and meet their financial targets. After 2018, the budgets were

decentralized down to the IBC level, which consequentially allowed the IBCs to set up

practical targets depending on their resource and community realities after consultation
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with KE’s strategy department. At that time, KE adopted the policy of targeting ABC

conversion to PMTs in high and very high loss feeders.

Second, the roll-out of ABC conversion is subject to resource constraints. Before the

project could be implemented at a specific PMT site, the designated IBC/area had to be

assessed for material and human resource availability, the extent of infrastructure plan-

ning development and the level of community resistance anticipated. KE prioritized the

project in areas which had comparatively less resource and administrative constraints to

meet targets set by strategy or IBC management.

Figure 1 shows the increased coverage of ABCs, both in terms of infrastructural cov-

erage (number of PMTs) and customer coverage (number of customers), over time be-

tween 2016 and 2020. Additionally, appendix maps (see Figure A1) depict the installation

across one IBC in Karachi over time.

Although ABC conversion made it very difficult to connect illegally to electricity ca-

bles, new ways of installing ”kundas” emerged with the passage of time, which involved

puncturing of ABC. Thus it was unclear to what extent this infrastructure improvement

alone would be sufficient to address the problem of illegal usage.

2.4 COVID-19 and Electricity Distribution

In February 2020, the first cases of COVID-19 were identified in Karachi. Shortly after-

wards, Karachi was put under lockdown from March 21 until May 9.6 During this period

meter reading activities were suspended, and bills were calculated on the basis of average

consumption of the past 11 months or consumption in the same month of the previous

year.7 Other field and in-person operations including infrastructure improvements were

also halted (Ahmad et al., 2021).

6Vakeel Rao, Hafeez Tunio, Tufail Ahmed, ”Sindh decides to go into COVID-19 lock down”. The Ex-
press Tribune. 21 March 2020, retrieved Aug 2021; Rizwan Shehzad, ”Countrywide lockdown stretched till
May 9”, 24 April 2020, The Express Tribune, retrieved Aug 2021.

7Salman Siddiqui, ”K-Electric consumers get high average bills” The Express Tribune, retrieved Aug
2021.
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As most industrial and commercial activities were closed down, there were severe

local economic effects, especially in lower and middle income urban areas, where many

people were forced out of work (Ahmad et al., 2021). The government introduced a mora-

torium on disconnecting non-paying electricity customers and announced bill relief pro-

grams for lower income and small and medium enterprises. Residential customers con-

suming less than 300 kwh per month could pay their billed amount during the months

of March to May in three equal instalments, which were added to their bills between

June and November.8 Small and medium industrial and commercial customers were also

eligible to receive bill waivers for three months.9 Although these programs offered im-

mediate relief to customers, they also negatively affected utility revenues. We capture

these effects in Section 6.2. Moreover, despite these support programs, phone surveys

conducted in June and November 2020 show that households were most likely to miss

electricity payments, with more than half of the households reporting having missed an

electricity payment during this period (Asad et al., 2020).

3 Data

The analysis utilizes data collected from two sources. First, the utility shared extensive

data at the feeder line, PMT, and consumer levels. In addition, we collected survey data

for a sample of utility customers.

3.1 Utility Feeder line Data

We have assembled a comprehensive and unique dataset including feeder level losses,

revenue recovery, utility claims, consumer complaints, and consumer number from KE.
8The News, ”Below 300 units, KE customers can avail three monthly instalments”, April 22, 2020, re-

trieved Aug 2021.
9Commercial customers with sanctioned load up to 5kW and industrial consumers with sanctioned

load up to 70kW received a subsidy of Rs100,000 and Rs450,000 in their electricity bills, respectively, which
was applied in six months starting from May 2020. See Dawn, ”KE announces relief for SMEs through
prepaid bills”, May 19, 2020, retrieved Aug 2021.
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The final dataset is aggregated to the feeder and monthly level, which covers 2163 feeder

lines in Karachi.

Loss and Revenue Recovery. The data on feeder-level monthly losses and revenue

recovery cover all feeder lines in Karachi, from January 2018 to October 2020. Losses are

measured as the difference between units sent out and units billed and then divided by

units sent out. Revenue recovery is defined as the ratio of net credit to billing.

Claims and Complaints. We collect utility claims from January 2018 to October 2020.

Utility claims happen when there is damage against KE infrastructure/property (e.g.,

PMT, service cable, etc.). KE then ends up filing an official claim against the suspected

party or institution. Police then investigate the claim.

We also assemble a dataset on consumer complaints from January 2018 to June 2021.

Consumer complaints are tickets submitted by KE customers regarding a variety of is-

sues, such as billing, technical problems, and service concerns for the contract account.

For each claim or complaint, we observe information on its topic, creation time, and the

corresponding feeder line. The data is then aggregated to the feeder level on a monthly

basis.

Consumer Number. For each feeder line in Karachi, we collect monthly data on the

number of active consumers in each category, including agricultural, bulk, commercial,

industry, and residential during the period between January 2018 and March 2021.

ABC Installation. KE provides dates when each PMT has ABC installed. We observe

the installation record till January 2021. To match this data with feeder-level monthly

variables, we create two measures for ABC adoption. First, we define a binary indicator

for whether a feeder line has at least one PMT with ABCs installed. Second, we calculate

the ratio of the number of PMTs with ABCs installed relative to the number of total PMTs

in a feeder line.
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3.2 Household Survey Data

In October and November 2021, we surveyed approximately 3,000 residential customers

across 150 PMTs. To select consumers to survey, we randomly selected households from

the utility’s roster of consumers in a multiple-step process. We restrict the sampling to

high-loss feeders within 8 of Karachi Electric’s IBC offices. Within these high loss feeder

lines, we restrict to PMTs with a minimum of 80 customers and a maximum of 500 cus-

tomers, to both ensure we have sufficient households to allow for replacement and to

avoid outlier transformers with particularly large number of customers. This leaves us

with more than 1,500 PMTs from which to select. We randomly select 150 PMTs, ensuring

PMTs both with and without ABCs are represented in the list. Selected PMTs serve, on

average, 202 residential customers each. Within PMTs, we limit our sample to residen-

tial customers with active accounts and then randomly select 20 customers per PMT to

survey.

The questionnaire collects information on basic house characteristics, household de-

mographics, and other outcomes related to electricity consumption. We collect data on

appliance ownership and use, as well as household expenditures (both electricity and

non-electricity related). Questions also cover household perceptions about their neigh-

bors theft and payment practices, as well as respondents’ beliefs about the utility, elec-

tricity service quality (both load shedding and voltage fluctuations), tariff, billing and

payment practices.

3.3 Utility Residential Consumer Data

For each surveyed residential customer, we obtain the corresponding individual-level

data on billing and payment behaviors from KE. The sample covers the period between

June 2018 and August 2021. In the data, we observe information on monthly billed elec-

tricity units and amount, the amount and date of payment, total due to KE, and the billing
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category mode (BCM). These data allow us to check whether a customer paid their bill in

a billing cycle or not.

The BCM variable allows us to observe whether billing occurred in a normal manner

or whether there are irregular bills. If a consumer has a normal BCM, it means that the

meter functioned properly and there were no errors in billing. There will be irregular

bills if the meter stops working, or becomes faulty, or if there are other errors in recording

units or calculating bills. Irregular bills also occur when there is a case of theft or kunda

detection by KE. According to the BCM classifications, we are able to identify customers

with irregular bills or those alleged by the utility to have engaged in thefts in a month.

4 Empirical Strategy

4.1 Research Design and Econometric Model

To estimate the economic effect of infrastructure improvements, our research design lever-

ages differences in time and space within the ABC conversion process in Karachi. The

adoption of ABCs follows a staggered process, the timing of which mainly depends on

KE’s business strategy. Since the roll-out of ABCs creates variations across feeder lines

and over time, we employ a staggered difference-in-differences (DID) approach to iden-

tify the causal effect of ABC conversion on feeder-level losses and revenue recovery.

For feeder line i of IBC region j in month t, we estimate the following regression

model throughout our main analysis.

yijt = βABCit + αi + δjt + εijt. (1)

The outcome variable includes losses and revenue recovery ratios, both measured in per-

centage points. The variable of key interest, ABCit is a binary indicator for whether a

feeder line i already had at least one PMT with ABC installed in month t.
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We add a rich set of fixed effects to control for unobservable determinants for losses

and revenue recovery. We include feeder fixed effect αi to capture feeder-level time-

invariant unobservable factors that may affect the outcome. We also control for IBC-

specific time fixed effect δjt to account for regional policy shocks or potentially different

time trends across IBCs. The standard errors are clustered at the feeder line level.

In an alternative model specification, we explore the intensity impact of the ABC

installation by replacing the ABC dummy with ABC ratio, which, as previously defined,

is the ratio of the PMTs that have been converted to ABCs in a feeder line.

4.2 Validity of Identification Strategy

Our identification strategy takes advantage of variations in outcome measures specific to

feeder lines with ABC conversion relative to feeder lines without ABC conversion, and

in periods before and after the conversion. Based on KE’s business strategy, the roll-out

of ABC conversion depends on pre-determined feeder line characteristics in terms of loss

categories, resource constraints, and local resistance. By including our fixed effects, the

model can account for a range of omitted variables that could otherwise bias the esti-

mates. The feeder line fixed effect controls for time-invariant differences across feeder

lines, such as loss categories, available resources, and community resistance. The IBC-

by-month fixed effects capture any IBC-level policies and efforts that might affect ABC

conversion and losses, such as change in IBC management, allocation of budgets, revision

of targets, etc. After adjustment for these fixed effects, the roll-out time is conditionally

independent of unobservable factors that may affect losses and revenue recovery.

Parallel Trends Assumption. The DID approach requires parallel trends in the out-

come variable between the treatment group and the control group in the absence of the

ABC conversion. To provide evidence that the assumption holds prior to treatment, we

estimate the dynamics of losses and revenue recovery using the event-study framework.

Specifically, we include leads and lags of the ABC conversion dummy in the baseline
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regression to trace out the month-by-month effects:

Yijt = ∑
−15≤k≤15

k ̸=−1

βk1[t − τi = k] + αi + δjt + εijt. (2)

The dummy variables, 1[t − τi = k], jointly represent the ABC conversion events. Specif-

ically, τi denotes the first month when feeder line i started deploying ABCs at its PMTs,

and k measures the gap between the current month and the initial deployment month τj.

A negative k represents the pre-conversion month while a positive k represents the post-

conversion month. Controlling for leads allows us to examine the pre-treatment effects as

a test for the parallel trends. Controlling for lags enables us to trace the effects in the peri-

ods after the initial conversion. Note that the dummy for k = −1 is omitted from Equation

(2) so that the estimated effects are relative to one month prior to the conversion. Figure

2 shows that the estimated coefficients for the leads of ABC-conversion dummy are small

in magnitude and statistically indistinguishable from zero. Hence, there is no evidence

of meaningfully differential trends in losses or revenue recovery ratio in advance of the

ABC conversion, which provides support for the parallel trends assumption.

Contemporary Loss Mitigation Policies. Our estimated impact of ABC conver-

sion might be confounded by contemporary loss mitigation policies. While national- or

regional-level policies are common shocks to different feeder lines and therefore will be

absorbed by the IBC-by-month fixed effects, feeder-level time-variant factors however,

present a major challenge. First, there might be contemporary efforts or policies that only

targets high-loss feeder lines within IBCs. Second, seasonal patterns might differ across

feeder lines. For example, KE might spend more efforts on maintenance during peak

seasons and these might be more frequent for high-loss feeder lines. To mitigate these

concerns, we include IBC-by-loss-category-by-month or feeder-by-calendar-month fixed

effects to capture feeder-level policies within each IBC. The results, shown in Panel A and

B of Table A1, are similar to those from our baseline estimates.
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Stable Unit Treatment Value Assumption. Another key identification assumption

is that there is no spillover effect on feeder lines in our control group. Specifically in our

setting, it means ABC conversions by one feeder line do not affect others that haven’t yet

adopted ABCs. This is perhaps mostly likely to occur in feeder lines that are very close

to each other. Concerns arise when there are spillovers of thefts or internal migration

into neighboring non-ABC feeder lines. In response to these concerns, KE adopted the

”ring fencing” strategy – once ABC conversion starts, they tried to cover neighboring

regions to prevent these negative spillovers. To further address this issue, we exclude

from our sample feeder lines that are very close to each other. Specifically, we identify

the center point of each feeder line area by averaging the GPS coordinates of its PMTs,

and calculate the distance between each pair of feeder line areas. We then re-estimate

the baseline model by dropping the feeders lines that have at least one nearby feeder line

within its 100m/300m/500m buffer zone. As reported in Panel C–E of Table A1, we get

similar coefficient estimates.

Heterogeneity-Robust DID Estimator. Recent literature shows the potential esti-

mation bias of the two-way fixed effects (TWFE) estimator with varied treatment tim-

ing (De Chaisemartin and d’Haultfoeuille, 2020; Goodman-Bacon, 2021; Callaway and

Sant’Anna, 2021). Under a setting with multiple periods and staggered treatment timing,

the bias arises from the comparison between later treated units and earlier treated units

that instead serve as the control. The event study model usually generates reliable esti-

mates as it breaks down treatment effects in different periods (Sun and Abraham, 2021).

To further mitigate this concern, we employ a heterogeneity-robust DID estimator pro-

posed by Callaway and Sant’Anna (2021). This estimator only compares treated units

with never-treated ones serving as controls, hence excluding all the “bad” comparisons.

In Panel F of Table A1, we report the aggregated estimates of the average treatment effect

on the treated (ATT) for all timing groups across all periods. The coefficient estimates

have the same sign and similar magnitudes with the ones from our baseline model.
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5 The Impacts of ABC Installations

In this section, we present results from our baseline model that suggest that infrastructure

improvements, in the form of ABC installation, resulted in reduced losses and increased

revenue recovery. To understand the channels through which these impacts occurred, we

also investigate whether ABCs installation affected the utility’s claims of damage or the

number of consumers.

5.1 Losses and Revenue Recovery

We investigate the effects of ABC installations through both event studies and regression

analyses. The event studies in Figure 2 estimate the difference between the feeders that

were “treated” via installation of ABCs on at least one PMT and those that were not (the

“untreated”), controlling for both IBC-by-month and feeder fixed effects.

These event studies provide two important results. First, there is no evidence of

differential pre-trends with respect to both losses and revenue recovery across the treated

and untreated groups in the months prior to ABC installation. Second, these illustrate a

negative effect on losses and a positive effect on revenue recovery from ABC installation.

We further investigate this relationship through difference-in-differences analysis, as

depicted in Equation 1. Results showing the estimated impact of ABCs – using the binary

variable indicative of ABC installation on at least one PMT on a feeder line – on losses are

provided in Table 1, Panel A. Results from regressions using our other measure of treat-

ment – the intensity of ABC installation within a feeder – are presented in Table1, Panel

B. These analyses are performed using both monthly and quarterly losses and revenue

recovery data as outcome measures. All regressions include feeder fixed effects.

Results in both panels provide a consistent story. ABC installation, whether mea-

sured as a binary indicator or as treatment intensity, led to significant reductions in losses

and increases in revenue recovery. The estimates in column 1 and 3 suggest that losses
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were lower by 6.2 to 8.2 percentage points in feeders with ABC wiring. This is a reduc-

tion of 26 % to 32 % of the average loss level in non-ABC feeders. Similarly, the estimates

in column 2 and 4 suggest that revenue recovery was improved by 5 to 5.2 percentage

points, which is an increase of 6 % of the average recovery in non-ABC feeders. Results

are robust to the inclusion of various fixed effects; coefficient are similar in magnitude,

regardless of whether we include month (quarterly) fixed effects or IBC-by-month (IBC-

by-quarter) fixed effects. Additional estimates, included in the Appendix, provide some

evidence of non-linearities in the effect of ABC installation intensity (Table A2), specifi-

cally we find diminishing returns to the fraction of PMTs covered by ABC installations

within feeders.

Prior to the intervention, some areas of the distribution system suffered from higher

losses and lower revenue recovery rates than other areas. We investigate whether ABCs

had differential impacts based on pre-intervention feeder loss (revenue recovery) level

(Table 2). We find that the effects of ABC installation are increasing in the level of losses

pre-intervention. In other words, losses decreased more in the feeders that had higher

levels of losses at baseline. Similarly, revenue recovery increased more amongst the feed-

ers with medium and low levels of baseline revenue recovery.

The COVID-19 pandemic caused major disruptions in the utilities operations, and

COVID related lock-downs and social distancing protocols also had major economic con-

sequences for the utility’s customers. Given that ABC roll-outs continued to take place

on both sides of the pandemic, it is difficult to disentangle the effects of infrastructure

upgrades and the pandemic. However, our data allows us to make some basic compar-

isons, leveraging differences at the feeder level across time. Table 3 presents potential

evidence of ABC’s providing some resilience against the pandemic’s exogenous shock in

the technical domain.

Losses, which are a function of the technical infrastructure appear to have not been

effected by the pandemic in feeders with ABCs (relative to those without ABCs), sug-
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gesting that the pandemic did not lead to an uptick in theft in areas with ABC wiring.

However, this resilience does not extend to revenue recovery, which is to be expected as

recovery is not just a function of the distribution network, but also of consumer’s ability

to pay back their bills. Moreover, we expect a greater fraction of consumption in ABC

feeders to be metered and billed relative to non-ABC feeders. Thus, bill recoveries in

ABC feeders might be affected more by shocks to income relative to non-ABC feeders.

Restricting the sample of feeders to only those in high loss IBCs (columns 3 and 4) gives

similar estimates for both losses and revenue recovery, indicating that ABC and non-ABC

feeders in low loss areas are not driving the results.

5.2 Mechanisms for Loss Reduction

Reductions in losses could come via multiple channels. We find evidence that the reduc-

tions in losses came with both an increase in the total number of customers and a reduc-

tion in utility claims of damage to the distribution infrastructure. Together, these results

are indicative of ABCs making kundas more difficult and as a result, more consumers

becoming formal customers of the utility. Further, customers would be more likely to

avoid disconnections due to bill non-payment in the absence of informal substitutes for

electrification, theoretically increasing revenue recovery.

5.2.1 Effects of ABC Installation on Customer Numbers

Losses could fall due to increased formalization of customers. Customers previously con-

necting to the grid via informal, illegal connections may shift to formal connections at the

time of ABC installation. We investigate this channel for loss reduction through event

studies and regression analyses.

We perform an event study in which the outcome variable is the inverse hyperbolic

sine of number of all types of consumers on a feeder line over time (Figure 3). We find

no statistically significant difference in pre-trends between the ABC “treated” and “un-
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treated” feeder lines. We do see a statistically significant increase in the number of cus-

tomers following the ABC installation. Interestingly, the increase occurs approximately

2 months after the installation of the ABCs, suggesting that customers previously using

illegal connections learn in the few months after ABC installation that kundas are more

difficult to connect with the ABCs and therefore switch to legal connections.

Like before, we implement two forms of regression analyses to estimate the impact

of ABCs on the number of consumers, one using the binary indicator of ABC installation

as the treatment variable, the other using the proportion of PMTs in a feeder covered by

ABCs as the measure of treatment intensity. Results are in Table 4. In Column 1, the

outcome variable is the inverse hyperbolic sine of number of consumers – of all types –

in each feeder line. We see a significant effect of ABCs on total consumers in both Panel

A (using the ABC binary treatment indicator) and Panel B (using the treatment inten-

sity variable). Columns 2 through 6 in the table show the estimated impacts of ABCs on

different categories of consumers (agricultural, bulk, commercial, industrial, and residen-

tial). We find that ABC installation led to a 6.5% increase in total number of customers at

the feeder line level. Column 6 suggests that these changes were driven primarily by an

increase in residential consumers.

5.2.2 Utility Legal Claims of Damage

With ABCs making it difficult to connect illegally, we see an increase in the number of

consumers above. Of interest is whether ABCs yield higher levels of consumer resent-

ment, especially given the local context and resistance to such infrastructural upgrades.

One source of this may be intentional damage to KE equipment, which would yield a

higher number of claims made by KE.

If consumers try to illegally connect to the distribution grid after the installation of

the ABCs, damage to either the ABCs or other parts of the electrical grid may result. When

there is damage to the distribution company’s infrastructure or property, the utility files
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a claim against the suspected party. We find that overall, utility claims against customers

fell after ABC installation (Table 5), though there is an uptick in ABC related claims. The

latter is only natural as feeders without ABCs would be ineligible for such claims. Overall,

we find that complaints fall, even when accounting for ABC damage, suggesting that ABC

installation results in a more robust distribution system.

6 Consumer Response to ABCs

To complement the analysis of the utility level impacts, we investigate the consumer level

response to ABCs using panel data on residential customers’ billing-related outcomes.

We conduct both event studies and difference-in-differences regression analyses of

ABCs impacts on residential customers. For residential consumer i served by PMT j in

month t, we estimate the following regression model:

yijt = βABCjt + αi + δt + γjτ(t) + εijt. (3)

The outcome variables include different consumer-level measures on billed electricity

consumption, payment behavior, and thefts. The variable of key interest, ABCjt is a bi-

nary indicator for whether PMT j already has ABC installed in month t. We add consumer

fixed effect (αi), month fixed effect δt, and PMT by month-of-year fixed effect γjτ(t) to cap-

ture unobservable factors. Standard errors are clustered at the PMT level.

6.1 Consumer Response: Billing Panel Data

Event studies in Figure 5 indicate that, following the installation of ABCs, both residential

consumers’ quantity of billed units and the monetary billed amount significantly, both of

which are consistent with a reduction in kundas and an increase in consumption of elec-

tricity services through formal connections to the grid. These came with reductions in the
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probability of customers not paying their bill and an increase in the payment ratio (the

proportion of the billed amount paid for the month), coinciding with the increases in rev-

enue recovery found in the feeder-level analysis. Lastly, there is evidence of a reduction

in irregular billing and billing following detection of theft.

The difference-in-differences regression analyses in Table 6 provide further insights.

Panel A shows the average treatment effects of ABCs, similar to those in the event studies.

With our binary treatment variable ”ABC”, we interpret these coefficients as the impact

of a PMT being upgraded from the old distribution wires to ABCs. In columns 1 and

2, the outcome variables are the inverse hyperbolic sine of billed units (kWh) and billed

monetary amounts (rupees). Results indicate the ABC conversion led to a 9% increase

in kWh of billed units (column 1) and a 9.8% increase in billed amount (column 2). In

addition, the probability of a customer not paying one’s monthly electricity bill on-time

decreased by 5.2 percentage points (column 3) and the ratio of monthly billed quantity

paid increased by 1.6 percentage points (column 4). Finally, the probability of a meter

related issue within a month and whether there were thefts during a month reduced by

11.1 and 3.8 percentage points, respectively.

Panel B shows heterogeneity by expenditure group. Interestingly, the effects of the

ABCs on the low expenditure and high expenditure groups are of similar magnitude for

all outcomes except one. In column 5, the group with expenditures greater than $2 per

day are significantly less likely to have irregular bills within a month than those house-

holds with expenditures less than $2 per day. This might be reflective of relatively better

metering infrastructure, metering, and billing practices in richer neighborhoods covered

by ABC installations.

6.2 Consumer Complaints

With ABCs making illegal connections more difficult to achieve, consumers might make

more frequent complaints to the utility (e.g., complaints regarding deterioration of service
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quality or disputes of bills), which we investigate here. We use utility feeder line data

on consumer complaints, and the type of complaints filed, to estimate impacts of ABCs

on these outcome measures. Regressions results are presented in Table 7, with Panel A

reporting results where the outcome variable is the number of complaints and Panel B

normalising these to be relative to the number of consumers at a feeder line. Estimated

impacts across the two panels suggest that the rise in complaints was proportional to

the increase in consumers. Panel A indicates an increase in total complaints, which is the

result of an increase in bill complaints and service requests in combination with a decrease

in arrears disputes. In contrast, after dividing the total complaints by the number of

consumers provided services within the feeder, the estimates in Panel B show no evidence

on any of the complaint types. These results suggest that although consumer complaints

increase, it seems to be a function of the number of customers also increasing. When we

account for the customer increase, there is no significant impact of the ABC conversion

on complaints.

6.3 Understanding Consumer Response via Survey Data

We use our household survey data to help us better understand the mechanisms through

which the ABC impacts may have occurred. The residential consumer survey is cross-

sectional, therefore, we interpret these results as correlational relationships. To under-

stand if these mechanisms potentially differ according to how well-off households are, we

report the results for the interactions of the ABC indicator with the Below2 and Above2

indicators.

Historically, the electricity utility has targeted load shedding according to feeder-line

level losses. Given losses fell and revenue recovery increased with the ABC (Table 1), we

would expect to see less load shedding in these ABCs relative to other high loss areas that

had not had ABCs installed. Table 8 presents differences in reported service quality for

households covered by ABC, that are above the $2 per day expenditures per capita and
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those that are below. We see no significant differences for either of these groups, relative

to the households not covered by ABCs, in the reported appliance damages (column 1) or

voltage fluctuations in summer (column 2) or winter (column 3). This indicates that, when

electricity is delivered, the perceived quality of those electricity services is not different

across ABCs and non-ABCs areas.

There are, however, significantly fewer hours per day of reported load shedding in

both the summer (column 4) and winter (column 5) among the ABC areas, relative to

the non-ABC areas. This suggests that the utility is reducing the hours of load shedding

within these areas, possibly because losses have decreased following the ABC conversion.

The estimated reduction in load shedding is approximately one fewer hour of load shed-

ding in areas with ABCs, depending on the season and the expenditure group. Notably,

the mean load shedding in our survey sample is 7.6 hours per day in the summer and 5.6

hours in the winter.

With fewer hours of load shedding (Table 8), household appliance ownership and

use may differ across ABC and non-ABC areas as households can use the appliances more

when there are more hours of electricity available. We present correlation results to this

effect in Table 9. Regarding the household total number of appliances (column 1), the

Below2 households in ABC areas have a significantly greater total number, compared to

the non-ABC areas. The Above2 households in ABC areas have a positive coefficient, but

with a larger standard error the difference is not statistically significant. Consistent with

less load shedding and greater appliance ownership, households in ABC areas report sig-

nificantly more total hours of appliance usage per day than the non-ABC areas (column

2). The survey collected ownership information on specific appliances, we report dif-

ferences in percentage ownership of some of the appliances for illustrative purposes in

columns 3 through 5.

Our panel analysis of utility consumer billing data showed that ABCs increased

billed monetary amount and the ratio of the billed amount paid, suggesting we could
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also see changes in the household reported expenditure. Differences in expenditures, as

reported in the household survey, are in given in Table 10. ABC households below the

$2 per day per capita expenditures have significantly higher electricity expenditures than

their non-ABC counterparts (column 3). It is not obvious ex-ante whether higher elec-

tricity expenditures would mean lower non-electricity expenditures or just overall higher

total expenditures. We see evidence of the latter, but not of the former among this below

the $2 per day per capita expenditures group of ABC houses. The expenditures data for

the above $2 per day per capita expenditures group are noisier and there are no significant

differences for this group.

Lastly, we use data from a number of survey questions designed to elicit respondents’

beliefs and perceptions to understand if there are differences across ABC and non-ABC

households with respect to the electricity utility, reliability, benefits, and subsidies. Re-

sults are presented in Figure 6. Interestingly, there are no differences in the proportion

of households that believe the utility is responsive to the customers’ needs, that the util-

ity is trustworthy, or that the utility cares about its customers; however, households in

ABC areas are, on average, less likely to believe that their electricity bills accurately re-

flect their consumption. ABC households below the $2 per day per capita expenditures

are less likely to report that they would pay their bill on time, in both situations in which

they have funds and when their financial resources are low; however, these household

are also more likely to believe that the government subsidizes electricity.

The survey also asked respondents to list the three most serious problems with re-

spect to electricity service provided by the utility and differences in these beliefs are re-

ported in Figure 7. Households in ABC areas are, on average, significantly less likely to

say electricity shortages and load shedding are serious problems, while also more likely

to say that bill errors are a problem. These are consistent with the other beliefs reported

above. Only a subset of these households – those that are also in the Above2 expenditure

group – are also significantly more likely to report thinking voltage fluctuations and an
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inability to power large appliances are a serious problem, a difference that could be the

result of differences in large appliance ownership.

7 Implications for Climate Change

Ex-ante, the implications of the ABC intervention for electricity generation and, therefore,

CO2 emissions are not obvious. If anything, our results to this point suggest that emis-

sions may increase as a result of infrastructure upgrades: ABCs led to an increase in both

the total number of utility customers and billed units (kWh) per customer, which together

indicate an increase in electricity supplied and therefore electricity generated. In a setting

such as Pakistan, where 62% of electricity generation is via fossil fuels (NEPRA, 2021), an

absolute increase in electricity generation likely means an increase in CO2 emissions.

In this section, we explore the implications of the infrastructure upgrade for climate

change through a multi-step process. First, we estimate the impacts of ABCs on a proxy

for electricity generation. Then, we calculate the marginal changes in CO2 emissions per

kWh change in electricity generated. Third, using the results of the prior two steps, we

perform back-of-the envelope calculations to estimate ABCs’ influence on CO2 emissions.

Lastly, to provide some prospective, we compare these estimates to the annual CO2 emis-

sions for Pakistan.

For the first step, given generation occurs at a higher level than the ABC intervention,

we use the quantity of electricity ”sent out” (kWh) to a feeder line per month (in other

words, the quantity delivered to a feeder line) to proxy for generation per feeder line. 10

To estimate the impact of ABCs on electricity generation, we run regressions akin to those

described in Equation 1, but with the quantity ”sent out” as the outcome variable. Results

in Table 11 show that ABCs led to a decrease in generation of 97,213.3 kWh per feeder line

10Electricity sent out includes metered consumption, unmetered (illegal) consumption as well as tech-
nical losses. A reduction in technical losses can be considered a pure welfare gain as CO2 emissions are
averted but consumption is not reduced. However, a reduction in in metered or unmetered consumption
might have welfare consequences for consumers which we are unable to capture in this calculation.
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per month (column 1). In logs, the intervention led to a 10.2% decrease in generation per

feeder line per month (column 2).

To translate these generation reductions per month into avoided CO2 emissions, we

perform calculations of the estimated reduction in CO2 emissions per kWh reduction

of electricity generated that are specific to Pakistan’s generation mix. Details of these

calculations are in Appendix A3, though broadly speaking, we create a mix of fuels that

would most likely be used to respond to changes in demand. This ”responsive mix”

consititutes mostly of generation attributed to fossil fuels, as these technologically allow

for changes relatively easier changes in production, when compared to other sources. Our

calculations indicate that the reduction in CO2 per kWh reduction of electricity services

consumed to be 0.76 kg CO2/kWh for our responsive mix.

Note that the above estimates is one of many alternatives. If, alternatively, if we as-

sume that marginal production takes place solely through natural gas (the least carbon

intensive of Pakistan’s fossil fuel generation mix) or residual fuel oil (the most carbon

intensive of the country’s fossil fuel generation mix), our estimates change to 0.46 kg

CO2/kWh and 1.06 kg CO2/kWh, respectively. Our responsive mix then is a conserva-

tive estimate, between both bounds, though we provide estimates using all three.

Finally, we calculate the change in CO2 emissions per change in electricity generated

by generation fuel type and, to put these numbers in perspective, we compare them to

Pakistan’s annual CO2 emissions. Results are in Table 12. In column 1, we present the

result of multiplying each of these estimated changes in CO2 per kWh change in gener-

ation by the estimated reduction in generation: 97,213.3 kWh per feeder line per month

(column 1 of Table 11). This provides us with a range of estimated reductions in CO2

emissions per year per feeder line, by fuel source of the marginal generator. We can ag-

gregate these numbers to all high loss feeders (column 2) and compare them the estimated

CO2 emissions for Pakistan in a year (column 3). As can be seen, regardless of the blend

used, the reduction in CO2 emissions is non-trivial, with the most conservative reduction
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in emissions due to high-loss IBCs accounting for almost a tenth of a percent of Pakistan’s

total CO2 emissions, increasing to 0.17% for the responsive blend, and up to .24% if the

highest polluting power plants are brought offline first.

8 Conclusions

High T&D losses and low revenue recovery are major impediments in providing reliable

and high quality electricity services in a sustainable manner. We study the effectiveness of

an infrastructure improvement program targeted to high loss areas in Karachi, Pakistan.

The program involved an extensive and fairly rapid conversion of bare electric service

wires by Aerial Bundled Cables, beginning in 2015. ABCs, due to their thick insulated

covering and intertwined design, ABCs make hooking illegal connectors to them more

difficult. We use the variation in timing of ABC installations at feeder lines, together with

administrative and customer-level survey data to identify the impact of ABCs using an

event study and difference-in-differences approach. The intensity of the ABC roll-out

over time was dependent on the business strategy of the utility, while the placement of

ABCs began in neighborhoods with least anticipated community resistance. However,

we find that there are no significant differences in the trends in losses, revenue recoveries,

and customer outcomes prior to ABC installation.

Differences in the timing of infrastructure upgrades across space allow us to use

panel data techniques to measure their impact on relevant outcome variables. Comple-

menting our analysis of KE’s administrative data, we also estimate individuals’ responses

to ABCs using residential customer-level data, which we collected in Fall 2021.

We find that ABC conversion reduced monthly losses by 6 to 8.2 percentage points

and increased recoveries by 5 percentage points. ABCs yielded greatest impact on losses

(revenue recovery) in the feeders with the highest loss (lowest revenue recovery) levels

prior to the intervention. We find evidence that ABCs led to an increase in the total num-
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ber of metered customers and a reduction in utility claims of damage to the distribution

infrastructure. Together, these results are indicative of ABCs making illegal connections

to the distribution wires more difficult and, as a result, more customers becoming formal

customers of the utility. We also find evidence of ABC’s providing some resilience against

the pandemic’s exogenous shock in the technical domain, as losses are not deferentially

affected by the pandemic in feeders with ABCs (relative to those without ABCs), sug-

gesting that the pandemic did not lead to an uptick in theft in areas with ABC wiring.

However, revenue recovery is negatively impacted which reflects negative shocks to con-

sumer’s ability to pay back their bills.

The results from our household surveys are mostly consistent with our findings from

the data provided by the utility. Customers in areas with ABCs reported considerably

less load shedding than those in areas without ABCs. However, there is no significant

difference in levels of trust in the utility across the intervention. In fact, we find that

households in areas with ABCs are less likely to think that utility billing is accurate. It

is difficult to draw a clear connection between infrastructure upgrades and trust in the

utility, as it is likely to be a function of customer beliefs about how much they should be

paying for electricity, which will depend on the economic, social and political context.

From the environment perspective, it is encouraging to see that despite an increase

in both the total number of customers and the billed units per customer, the amount of

electricity sent out over the distribution system decreased after ABC installation. We esti-

mate that the reduction in CO2 emissions from ABC installations to be between 0.10% and

1.19% of the country’s total emissions within a year. In a country that depends on thermal

power plants to produce 70% of the total electricity, the carbon-reducing impact of ABCs

is clearly non-trivial.
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Figure 1: Trend of ABC Installation

Notes: This figure shows the cumulative number of PMTs (pole mount transformers) and customers covered
by ABCs over time in Karachi, Pakistan.
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Figure 2: Event Study Estimates of the ABC Impact on Losses and Revenue Recovery

Notes: Figure shows the coefficients and their 95% confidence intervals from an event-study regression
estimating the ABC impact on losses and the revenue recovery rate. Data are at the feeder level on a
monthly basis. Regressions include IBC-by-month and feeder fixed effects. One month prior to the ABC
installation (-1) is the reference group and the corresponding coefficient is normalized to zero. Standard
errors are clustered at the feeder level.
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Table 1: Impact of ABC Installation on Losses and Revenue Recovery

Monthly Quarterly

Loss RR Loss RR

(1) (2) (3) (4)

Panel A: DID Estimates
ABC -0.082*** 0.052*** -0.062*** 0.050***

(0.009) (0.009) (0.008) (0.009)

Panel B: Intensity of Treatment
ABC Ratio -0.176*** 0.090*** -0.175*** 0.105***

(0.013) (0.013) (0.013) (0.013)

Control Mean 0.260 0.792 0.243 0.813
Observations 47,575 37,353 18,219 15,157
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓
IBC-Quarter FE ✓ ✓

Notes: Data are at the feeder line level. There are 2163 feeder lines in Karachi during the
study period. ABC is a binary indicator that equals 1 when the feeder line has PMTs with
ABC installed, and equals zero otherwise. ABC Ratio is defined as the number of PMTs
with ABC installed divided by the number of total PMTs in a feeder line. All regres-
sions include feeder and IBC-by-month or IBC-by-quarter fixed effects. Standard errors
in parentheses are clustered at the feeder line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 2: Heterogeneous Impacts by High/Low Loss Feeders

Monthly Quarterly

Loss RR Loss RR

(1) (2) (3) (4)

ABC -0.024* -0.033*** -0.006 -0.024***
(0.014) (0.010) (0.014) (0.009)

ABC × Medium Loss -0.061*** -0.057***
(0.016) (0.016)

ABC × High Loss -0.135*** -0.126***
(0.030) (0.029)

ABC × Mediam RR 0.098*** 0.073***
(0.013) (0.014)

ABC × Low RR 0.182*** 0.153***
(0.022) (0.023)

Control Mean 0.260 0.792 0.243 0.813
Observations 43,041 23,461 16,495 9,635
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓
IBC-Quarter FE ✓ ✓

Notes: Data are at the feeder line level. There are 2163 feeder lines in Karachi during the study
period. ABC is a binary indicator that equals 1 when the feeder line has PMTs with ABC in-
stalled, and equals zero otherwise. We classify the initial losses or revenue recovery rate (the
monthly average losses or revenue recovery rate over 2018m1 and 2018m6) into three per-
centiles, low, medium, and high. The ABC indicator is then interacted with binary indicators
for whether the feeder line falls into certain loss or RR categories. All regressions include feeder
line and IBC-by-month fixed effects. Standard errors in parentheses are clustered at the feeder
line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 3: The Resilience of ABC Impact to COVID

All IBCs High-Loss IBCs

Loss RR Loss RR

(1) (2) (3) (4)

ABC -0.081*** 0.055*** -0.084*** 0.056***
(0.009) (0.009) (0.009) (0.009)

ABC × COVID -0.007 -0.025* -0.013 -0.032**
(0.011) (0.014) (0.012) (0.015)

Outcome Mean 0.260 0.792 0.324 0.701
Observations 47,575 37,353 13,919 11,721
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓ ✓

Notes: Data are at the feeder line level. There are 2163 feeder lines in Karachi during the study pe-
riod. ABC is a binary indicator that equals 1 when the feeder line has PMTs with ABC installed,
and equals zero otherwise. COVID is a binary indicator for the post-COVID period (i.e., after
March 2020). All regressions include feeder line and IBC-by-month fixed effects. Standard errors
in parentheses are clustered at the feeder line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 3: Event Study Estimates of the ABC Impact on the Number of Consumers

Notes: Figure shows the coefficients and their 95% confidence intervals from an event-study regression
estimating the ABC impact on the number of consumers measured in inverse hyperbolic sines. Data are at
the feeder level. From the top to the bottom, the figure shows the number of all claims, ABC-related claims,
and non-ABC-related claims. Regressions include IBC-by-month and feeder fixed effects. One month prior
to the ABC installation (-1) is the reference group and the corresponding coefficient is normalized to zero.
Standard errors are clustered at the feeder level.

37



Table 4: Impact of ABC on Consumer Number

VARIABLES (IHS) Total Agriculture Bulk Commerce Industry Resident

(1) (2) (3) (4) (5) (6)

Panel A: DID Estimates
ABC 0.065*** -0.002 -0.004 -0.023 -0.009 0.064**

(0.022) (0.019) (0.006) (0.029) (0.035) (0.028)

Panel B: Intensity of Treatment
ABC Ratio 0.138*** 0.005 -0.008 -0.053 -0.015 0.159***

(0.033) (0.009) (0.008) (0.047) (0.052) (0.043)

Outcome Mean 1,582.96 1.24 0.09 263.41 11.71 1,306.51
Observations 67,602 67,602 67,602 67,602 67,602 67,602
Feeder FE ✓ ✓ ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: The outcome variable is the log number of consumers in each feeder line. Columns 2-6 refers to dif-
ferent consumer categories. ABC is a binary indicator that equals 1 when the feeder line has PMTs with
ABC installed, and equals zero otherwise. ABC Ratio is defined as the number of PMTs with ABC installed
divided by the number of total PMTs in a feeder line. All regressions include feeder line and IBC-by-month
fixed effects. Standard errors in parentheses are clustered at the feeder line level. * p < 0.1, ** p < 0.05, ***
p < 0.01.
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Figure 4: Event Study Estimates of the ABC Impact on KE Claims

Notes: Figure shows the coefficients and their 95% confidence intervals from an event-study regression
estimating the ABC impact on the number of KE claims measured in inverse hyperbolic sines. Data are at
the feeder level. From the top to the bottom, the figure shows the number of all claims, ABC-related claims,
and non-ABC-related claims. Regressions include IBC-by-month and feeder fixed effects. One month prior
to the ABC installation (-1) is the reference group and the corresponding coefficient is normalized to zero.
Standard errors are clustered at the feeder level.
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Table 5: Impact of ABC on KE Claims

VARIABLES (IHS) All ABC
Related

Non-ABC
Related

(1) (2) (3)

Panel A: DID Estimates
ABC -0.058*** 0.063** -0.063***

(0.018) (0.024) (0.018)

Panel B: Intensity of Treatment
ABC Ratio -0.170*** 0.051 -0.175***

(0.029) (0.033) (0.029)

Outcome Mean 9.278 0.159 9.118
Observations 41,536 41,536 41,536
Feeder FE ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓

Notes: The outcome variable is the number of KE claims, including all types of
claims, ABC-related claims, and non-ABC-related claims, all measured in in-
verse hyperbolic sine. These claims happen when there is damage against the
KE infrastructure/property and then KE files a claim against the public or an
individual for damage, and then the police investigates the claim. ABC is a bi-
nary indicator that equals 1 when the feeder line has PMTs with ABC installed,
and equals zero otherwise. ABC Ratio is defined as the number of PMTs with
ABC installed divided by the number of total PMTs in a feeder line. All re-
gressions include feeder line and IBC-by-month fixed effects. Standard errors
in parentheses are clustered at the feeder line level. * p < 0.1, ** p < 0.05, ***
p < 0.01.
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Figure 5: Event Study: Effect of ABC on Customer Behavior

Notes: Figure plots coefficients and their 95% confidence intervals from the event study estimates of the ABC
effect. The outcome variables include billed electricity units (in inverse hyperbolic sine), billed electricity
amount (in inverse hyperbolic sine), an indicator for whether the customer does not pay electricity bills on
time, the proportion of payment relative to the total dues to KE (payment ratio), an indicator for whether
there are irregular bills in that month, and an indicator for whether there are thefts in that month. All
regressions include customer, month, and PMT-by-Month-of-Year FEs. Standard errors are clustered at the
PMT level.
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Table 6: Effect of ABC on Customer Behaviors

IHS
Billed
Units

IHS
Billed

Amount

Not Pay Payment
Ratio

Irregular
Bills

Thefts

(1) (2) (3) (4) (5) (6)

Panel A: Average Treatment Effect
ABC 0.090*** 0.098*** -0.052*** 0.016*** -0.111*** -0.038***

(0.024) (0.029) (0.012) (0.005) (0.021) (0.008)

Panel B: Heterogeneity by Expenditure Groups
ABC × Below2 0.090*** 0.096*** -0.050*** 0.017*** -0.106*** -0.038***

(0.024) (0.030) (0.012) (0.005) (0.020) (0.008)
ABC × Above2 0.087 0.118* -0.076*** 0.014 -0.159*** -0.039***

(0.060) (0.070) (0.027) (0.011) (0.041) (0.015)

Outcome Mean 241.05 3,369.08 0.33 0.20 0.20 0.05
Observations 88,296 88,296 88,296 88,296 88,296 88,296
Number of HHs 3047 3047 3047 3047 3047 3047
Customer FE ✓ ✓ ✓ ✓ ✓ ✓
Month FE ✓ ✓ ✓ ✓ ✓ ✓
PMT-MoY ✓ ✓ ✓ ✓ ✓ ✓

Notes: Customer-level data are provided by KE. The outcome variables include billed electricity units (in
inverse hyperbolic sine), billed electricity amount (in inverse hyperbolic sine), an indicator for whether the
customer does not pay electricity bills on time, the proportion of payment relative to the total dues to KE
(payment ratio), an indicator for whether there are irregular bills in that month, and an indicator for whether
there are thefts in that month. ABC is a binary dummy that equals 1 if the household is served by a PMT that
has ABCs installed already. Above2 = 1 if the household’s expense per capita is above $2 each day and Be-
low2 = 1 if the household’s expense per capita is below $2 each day. All regressions include customer, month,
and PMT-by-month-of-year FEs. Standard errors are clustered at the PMT level. * p < 0.1, ** p < 0.05, ***
p < 0.01.
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Table 7: Impact of ABC on Consumer Complaints

VARIABLES (IHS) All Bill
Complaints

Service
Requests

Technical
Complaints

(1) (2) (3) (4)

Panel A: Total Measures
ABC -0.079*** 0.223*** -0.126*** -0.238***

(0.023) (0.031) (0.041) (0.032)
Outcome Mean 85.58 5.48 1.73 12.32

Panel B: Per Consumer Measures
ABC -0.016*** 0.001*** 0.002* -0.018***

(0.002) (0.000) (0.001) (0.002)
Outcome Mean 0.264 0.011 0.086 0.166

Observations 71,918 71,918 71,918 71,918
Control ✓ ✓ ✓ ✓
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓ ✓

Notes: Data are at the feeder line level. The outcome variable is the inverse hyperbolic sine of
the number of consumer complaints, including all types of complaints, bill complaints, ser-
vice request. In panel A, We add consumer number as control variable. In panel B, we use
per consumer measures defined as the number of complaints divided by the number of con-
sumers covered by a feeder line. All regressions include feeder line and IBC-by-month fixed
effects. Standard errors in parentheses are clustered at the feeder line level. * p < 0.1, **
p < 0.05, *** p < 0.01.
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Table 8: Effect of ABC on Household-Reported Service Quality

Appliance
Damages

Weekly Number of
Voltage Fluctuations

Daily Hours of Load
Shedding/Power Cuts

Summer Winter Summer Winter

(1) (2) (3) (4) (5)

ABC × Below2 0.009 -0.150 -0.022 -1.173*** -1.015***
(0.028) (0.313) (0.220) (0.260) (0.322)

ABC × Above2 0.072 0.926* 0.300 -1.479*** -0.984**
(0.059) (0.511) (0.437) (0.532) (0.476)

Control Mean 0.248 1.237 0.699 8.541 6.872
Observations 3,068 2,882 2,887 3,068 3,068
R-squared 0.038 0.062 0.035 0.125 0.302
Control ✓ ✓ ✓ ✓ ✓
IBC FE ✓ ✓ ✓ ✓ ✓

Notes: Outcome variables are collected via our household survey implemented in late 2021. ABC is a bi-
nary dummy that equals 1 if the household is served by a PMT with ABCs installed. Control variables
included are: total number of family members, number of rooms, years in the neighborhood, indicators for
house owners, indicators for owning a car, and indicators for having financial accounts. Above2 = 1 if the
household’s expense per capita is above $2 each day and Below2 = 1 if the household’s expense per capita
is below $2 each day. Standard errors are clustered at the PMT level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 9: Effect of ABC on Appliance Ownership

Total
Number of
Appliances

Total Hours
of Daily
Usage

% Own
Sewing

Machine

% Own TV % Own
Water

Dispenser

(1) (2) (3) (4) (5)

ABC × Below2 0.506*** 3.487*** 0.014 0.131*** 0.004*
(0.156) (0.847) (0.014) (0.029) (0.002)

ABC × Above2 0.121 4.336*** 0.071*** 0.032 0.006
(0.376) (1.607) (0.019) (0.069) (0.006)

Control Mean 6.833 18.409 0.038 0.378 0.001
Observations 3,068 3,068 3,068 3,068 3,068
R-squared 0.372 0.198 0.028 0.149 0.005
Control ✓ ✓ ✓ ✓ ✓
IBC FE ✓ ✓ ✓ ✓ ✓

Notes: Outcome variables are collected via our household survey implemented in late 2021. ABC is a bi-
nary dummy that equals 1 if the household is served by a PMT with ABCs installed. Control variables
included are: total number of family members, number of rooms, years in the neighborhood, indicators for
house owners, indicators for owning a car, and indicators for having financial accounts. Above2 = 1 if the
household’s expense per capita is above $2 each day and Below2 = 1 if the household’s expense per capita
is below $2 each day. Standard errors are clustered at the PMT level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 10: Effect of ABC on Household Expenditures

Total
Expenditures

Non-Electricity
Expenditures

Electricity
Expenditures

(1) (2) (3)

ABC × Below2 1,604.285* 573.110 1,016.532***
(838.381) (796.270) (229.586)

ABC × Above2 -8,916.708 -5,059.016 -3,854.354
(8,444.901) (7,005.919) (3,674.562)

Outcome Mean 31,798 27,613 4,244
Observations 3,068 3,052 3,052
R-squared 0.360 0.316 0.088
Control ✓ ✓ ✓
IBC FE ✓ ✓ ✓

Notes: Expenditures are in Pakistani rupees and the exchange rate at the time was ap-
proximately 1 USD = 170 rupees. Outcome variables are collected via our household
survey implemented in late 2021. ABC is a binary dummy that equals 1 if the house-
hold is served by a PMT with ABCs installed. Control variables included are: total
number of family members, number of rooms, years in the neighborhood, indicators for
house owners, indicators for owning a car, and indicators for having financial accounts.
Above2 = 1 if the household’s expense per capita is above $2 each day and Below2 = 1 if
the household’s expense per capita is below $2 each day. Standard errors are clustered
at the PMT level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 6: Effect of ABC on Household Beliefs

Notes: Figure plots coefficients and their 95% confidence intervals from regressing outcome variables on
the interactions between ABC (a binary dummy that equals 1 if the household is served by a PMT with
ABCs installed) and two categorical income variables (Above2 and Below2). Above2 = 1 if the household’s
expense per capita is above $2 each day and Below2 = 1 if the household’s expense per capita is below $2
each day. Data were collected via our household survey implemented in late 2021 in response to questions
asking respondents to indicate whether they agreed or disagreed with the belief statement. The outcome
variables here are binary indicators equaling 1 if the respondent indicated some level of agreement (between
mildly to strongly agree) with the statement and zero otherwise. Regressions include control variables:
total number of family members, number of rooms, years in the neighborhood, indicators for house owners,
indicators for owning a car, indicators for having financial accounts, expenditures on food items, and binary
indicators for household income categories. Standard errors are clustered at the PMT level.
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Figure 7: Effect of ABC on Household-Reported Serious Problems

Notes: Figure plots coefficients and their 95% confidence intervals from regressing outcome variables on
the interactions between ABC (a binary dummy that equals 1 if the household is served by a PMT with
ABCs installed) and two categorical income variables (Above2 and Below2). Above2 = 1 if the household’s
expense per capita is above $2 each day and Below2 = 1 if the household’s expense per capita is below $2
each day. Data were collected via our household survey implemented in late 2021. They are the response to
the question, “Thinking about your issues with the electricity utility, what is your most serious problem you
face with the electricity service?” The outcome variables are binary indicators for whether the household
lists the corresponding issues as one of their top 3 issues. Regressions include control variables: total
number of family members, number of rooms, years in the neighborhood, indicators for house owners,
indicators for owning a car, and indicators for having financial accounts. Standard errors are clustered at
the PMT level.
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Table 11: Effect of ABC on Electricity Sent-Out

Quantity Sent Out
(kWh per month)

Level IHS

(1) (2)

ABC -97,213.292*** -0.102***
(18,433.656) (0.023)

Outcome Mean Level 920,981 920,981
Observations 47,575 47,575
Feeder FE ✓ ✓
IBC-Month FE ✓ ✓

Notes: Data are at the feeder line level. ABC is a binary indicator that
equals 1 when the feeder line has PMTs with ABC installed, and equals
zero otherwise. All regressions include feeder line and IBC-by-month
fixed effects. Standard errors in parentheses are clustered at the feeder
line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 12: Change in CO2 Emissions per Change in Electricity Generated, by
Generation Fuel Type

∆ in CO2 ∆ in CO2 High loss feeders:
emissions (tons) emissions (tons) % of Pakistan’s

per year per year for all annual CO2
per feeder high loss feeders emissions

Generation Fuel(s) (1) (2) (3)

Natural gas - 536.6 - 213,574 0.10%
Responsive blend - 886.6 - 352,861 0.17%
Residual fuel oil - 1236.6 - 492,148 0.24%

Notes: Numbers for column 1 are based on calculations in Appendix A3 and regression results
in column 1 of Table 11. Column 2 assume 398 high loss feeders. Columns 3 is calculated by
dividing the number in column 2, by the 2018 estimated CO2 emissions for Pakistan (208,370
kt). Pakistan’s CO2 emissions include ”carbon dioxide emissions are those stemming from the
burning of fossil fuels and the manufacture of cement. They include carbon dioxide produced
during consumption of solid, liquid, and gas fuels and gas flaring.” The emissions data for
Pakistan are from the World Open Data, which is sourced from the 2020 CAIT data from Cli-
mateWatch.
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APPENDIX: FOR ONLINE PUBLICATION

A1 ABC Installation Over Time by PMT

(a) 2016m6

(b) 2018m12

(c) 2020m12

Figure A1: ABC Installation at PMTs

Notes: The figures show the location of PMTs in one of the IBCs with high losses. Light colored circles
indicate PMTs without ABCs, and darker colored circles indicate PMTs that have been converted to ABCs..
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A2 Additional Figures and Tables

Table A1: Robustness Checks of ABC Impacts on Losses and Revenue Recovery

Loss RR

A. Feeder & IBC-by-Loss-Category-by-Month FE -0.066*** 0.048***
(0.008) (0.009)

B. Feeder-by-Calendar-Month & IBC-by-Month FE -0.092*** 0.053***
(0.010) (0.010)

C. Keep Feeders with >100m Distance from Others -0.081*** 0.053***
(0.009) (0.009)

D. Keep Feeders with >300m Distance from Others -0.088*** 0.053***
(0.010) (0.010)

E. Keep Feeders with >500m Distance from Others -0.095*** 0.046***
(0.017) (0.015)

F. Heterogeneity-Robust DID Estimator -0.073*** 0.066***
(0.013) (0.012)

Notes: Data are at the feeder line level. The coefficient estimate in each cell is from a separate re-
gression. In Panel A, we control for Feeder and IBC-by-Loss-Category-by-Month FEs. In Panel B,
we control fro feeder-by-calendar-month and IBC-by-month FEs. In Panel C–E, we only keep the
feeder lines with at least 100m/300m/500m distance from its nearest neighbors. In Panel F, we
report the aggregated ATT for all the timing groups across all periods using the heterogeneity-
robust DID estimator proposed by Callaway and Sant’Anna (2021). * p < 0.1, ** p < 0.05, ***
p < 0.01.
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Table A2: Nonlinearity in Impacts of ABCs

Monthly Quarterly

Loss RR Loss RR

(1) (2) (3) (4)

ABC Ratio -0.159*** 0.176*** -0.130*** 0.185***
(0.030) (0.039) (0.035) (0.041)

ABC Ratio2 -0.019 -0.092** -0.048 -0.086**
(0.032) (0.042) (0.037) (0.043)

Control Mean 0.260 0.792 0.243 0.813
Observations 47,575 37,353 17,626 14,664
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓
IBC-Quarter FE ✓ ✓

Notes: Data are at the feeder line level. ABC Ratio is defined as the number of PMTs
with ABC installed divided by the number of total PMTs in a feeder line. All regres-
sions include feeder line and IBC-by-month/quarter fixed effects. Standard errors in
parentheses are clustered at the feeder line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A3: Impact of ABC on Consumer Number: Before and After COVID

VARIABLES Total Agriculture Bulk Commerce Industry Resident

(1) (2) (3) (4) (5) (6)

ABC 0.074*** 0.000 -0.006 0.032 0.017 0.072***
(0.021) (0.019) (0.006) (0.025) (0.035) (0.025)

ABC × COVID -0.045 -0.015 0.013 -0.279*** -0.132** -0.041
(0.041) (0.012) (0.012) (0.074) (0.063) (0.053)

Outcome Mean 1,582.96 1.24 0.09 263.41 11.71 1,306.51
Observations 67,602 67,602 67,602 67,602 67,602 67,602
Feeder FE ✓ ✓ ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓ ✓ ✓ Yes

Notes: The outcome variable is the number of consumers in each feeder line, measured in inverse hyper-
bolic sine. Columns 2-6 refers to different consumer categories. ABC is a binary indicator that equals 1
when the feeder line has PMTs with ABC installed, and equals zero otherwise. COVID is a binary in-
dicator for the post-COVID period (i.e., after March 2020). All regressions include feeder line and IBC-
by-month fixed effects. Standard errors in parentheses are clustered at the feeder line level. * p < 0.1, **
p < 0.05, *** p < 0.01.
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A3 Calculations: Reduction in CO2 per kWh Reduction in Electricity
Generated

To calculate the approximate reduction in CO2 per kWh reduction of electricity services
consumed, we undertake a multi-step calculation. We use information specific to Pak-
istan, based on NEPRA’s 2021 Annual State of the Industry Report.

We first calculate the proportion of generation attributed to each of the fuels poten-
tially responding to the changes in demand. We use details on the generation mix in Table
A4 and assume that LNG is same as natural gas throughout the calculations.

Table A4: Generation Mix for Pakistan, 2021

Fuel Generation Quantity (GWh) Percent of Generation

Natural gas 17,917.02 12.6%
Liquefied natural gas (LNG) 31,761.81 22.3%
Residual fuel oil (RFO) 10,596.06 7.4%
Coal 28,000.78 19.7%
Hydro 38,800 27.3%
Nuclear 10,871 7.6%
Other renewables (solar, wind) 4,322 3.0%

Total 142268.67 100%

Source: NEPRA (2021)

Further, we assume that the fossil fuel (natural gas, residual fuel oil, and coal) genera-
tion is responding to the changes in demand and that this response is proportional, based
on their contributions to generation. It is a safe assumption that nuclear and renewables
are not responding. Hydro could be the marginal responder, but it is very unlikely; the
zero marginal cost of hydropower makes it much cheaper than oil, coal or gas generation.

Based on these assumptions, we calculate the proportion of responding generation
that is contributed by each of these fossil fuels:

Natural gas: (17.9+31.8)/(17.9+31.8+10.6+28.0) = 49.8/88.3 = 56%
Residual fuel oil: 10.6/88.3 = 12%
Coal: 28.0/88.3 = 32%

Next, we calculate the average emissions intensity by fuel type of generation. We
assume a plant efficiency and apply an emissions factor to estimate the kg of CO2 per
MWh reduction. We multiply the average heat rate for the [natural gas/RFO/coal] power
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plants in Pakistan, based on NEPRA’s reports (NEPRA, 2021), and multiple these times
the carbon intensity of the [natural gas/RFO/coal] fuel. These calculations allow us to
account not only for the generation fuel type, but also the plant efficiency.

The average emissions intensity for each of the fossil fuel sources of generation are
as follows:

Natural gas: (8.7 MMBtu/MWh) X (52.9 kg CO2/MMBtu) = 460 kg CO2/MWh

Residual fuel oil: (14.1 MMBtu/MWh) X (75 kg CO2/MMBtu) = 1,060 kg
CO2/MWh

Coal: (97 kg CO2/MMBtu) X (12 MMBtu/MWh) = 1,170 kg CO2/MWh

To achieve our blended estimate of the reduction in CO2 per kWh reduction of elec-
tricity services consumed, we assume that the marginal generators are proportional to the
generation from oil, coal and gas and weight these according to the proportion that each
fuel contributes to the generation mix, as follows:

= (460 X 56%) + (1060 X 12%) + (1170 X 32%) = 760 kgCO2/MWh = 0.76 kg CO2/kWh

This calculation provides our basic estimation of the reduction in CO2 per kWh re-
duction of electricity services consumed: 0.76 kg CO2/kWh.

There are some caveats to this calculation. As mentioned above, this assumes plants
generating with fossil fuels respond. If hydro responds, the answer would be lower. This
calculation also ignores upstream fuel effects, like natural gas leakage, which would make
the answer higher if included. Further, it is possible that the generation response is not
proportional across the fossil fuels.

To provide upper and lower bound estimates of the reduction in CO2 per kWh re-
duction of electricity services consumed, we can alternatively assume that the marginal
generation is either strictly natural gas (the least carbon intensive of the three fuels) or
residual fuel oil (the most carbon intensive of the three fuels). This provides us with the
range of estimates in Table A5 below.
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Table A5: Change in CO2 emissions per change in electricity
generated, by fuel

Fuel(s) Change in CO2 per generation change
(kg CO2/kWh)

Natural gas 0.46
Blended generation fuels 0.76
Residual fuel oil 1.06

Source: We use these numbers in our calculations in Section 7 of the paper.
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