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Abstract

Groundwater depletion threatens long-term food security in developing countries.
Moreover, groundwater pumping contributes to climate change. We evaluate the ef-
fect of targeted subsidies for technology to use groundwater more efficiently in agri-
culture. Using a randomized controlled trial across 360 villages in Bangladesh, we
show that subsidies reduce electricity used for pumping by 38 percent, but only when
targeted to water sellers. Subsidizing technology to individual farmers has smaller ef-
fects. Features of the groundwater market can explain this result. Natural monopolist
water sellers charge fixed fees to farmers, but maintain a role in irrigation planning,
incentivizing them to adopt conservation practices.
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1 Introduction

Groundwater access makes agriculture more productive and can reduce poverty in rural
areas (Sekhri, 2014; Hornbeck and Keskin, 2015; Jain et al., 2021). But increasing ground-
water depletion poses a problem for agriculture (Vörösmarty et al., 2000; Konikow and
Kendy, 2005; Rodell, Velicogna, and Famiglietti, 2009; Schewe et al., 2014; Famiglietti,
2014). At the same time, groundwater pumping emits carbon dioxide and contributes
to climate change. These issues raise the question of how to use groundwater more effi-
ciently in agriculture?

One key issue is that like other resources, water suffers from common pool prob-
lems. As a result, various local institutions emerge to allocate water. For instance, irri-
gation districts govern allocation to farmers in the American west (Coman, 1911). In less
developed countries, collective action by farmer groups can help mitigate the common
pool problem inherent in irrigation (Ostrom, 1990). Moreover, market imperfections in
developing countries prevent farmers from operating at large scales (Foster and Rosen-
zweig, 2022). A typical village consists of hundreds of tiny plots cultivated by different
people. Water markets emerge in this setting because large fixed costs of drilling create
economies of scale, making it efficient for a single pump owner to sell water to nearby
farmers.

In this paper, we ask who benefits from resource conservation when markets allo-
cate natural resources? We study a water-saving technology in an environment where wa-
ter itself has no price, costly well drilling creates a barrier to entry, and a natural monop-
olist pump owner sells water to farmers. This type of market institution exists in many
settings (Jacoby, Murgai, and Ur Rehman, 2004; Wang et al., 2007; Banerji, Meenakshi, and
Khanna, 2012; Fishman, Giné, and Jacoby, 2021), but it complicates the benefits (if any)
from using water more efficiently. Several possibilities exist. On the one hand, natural
monopolist water sellers may be providing too little water to farmers. Corrective action
in this case can lower welfare (Buchanan, 1969). On the other hand, farmers may enjoy
greater profits if technology lowers their water costs. Or, monopolist water sellers may
use technology to their benefit if extraction costs are not priced into contracts.

We implement a randomized field experiment to study the distribution of benefits
from subsidizing a water-saving technology. The technology is a perforated plastic pipe
that is planted into the rice field to plan irrigation based on crop-water needs. Using this
pipe is called Alternate Wetting and Drying (AWD). The AWD pipe makes it visible to
the farmer when the soil moisture is sufficiently low that the crop needs water. By having
this information, the farmer may be able to dry the field for longer periods, reducing
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overall water use. The technology is ideal for our experiment for two reasons. First,
subsidies can be efficient because AWD reduces the consumption of electricity, which is
priced below its social marginal cost.1 Second, our setting in Bangladesh exemplifies the
case where neighboring farmers obtain water from a monopoly supplier. This allows us
to test whether benefits vary when subsidies are available to water sellers, rather than
buyers.

To do this, we introduced subsidies in one of three ways. In 105 villages, we went
individually to farmers and offered AWD pipes at either an 85 or 55 percent subsidy,
which was cross randomized at the village level. In another 105 villages, these same
subsidies were offered at a village meeting, giving farmers an opportunity to deliberate
on the decision. In the third set of villages, we provided the subsidy offers directly to the
owner of the tube well — and not to individual farmers who buy water from the owner.
Lastly, 45 villages serve as a control group where no subsidies were offered.

We have two primary results. First, targeted subsidies to tube well owners reduce
electricity used for irrigation after two years by 38 percent. Rice yields do not change —
indicating an increase in water-use efficiency. The quantity of electricity saved amounts to
about 1,200 kilowatt-hours per year, or 11 percent of the annual consumption for an aver-
age household in the United States. The program costs amount to 1.7 cents per kilowatt-
hour saved, a figure that is in line with the most cost effective interventions to use energy
more efficiently in the United States (Allcott and Mullainathan, 2010).

We only find these effects when the subsidies are targeted to water sellers. At first
glance, it is counter-intuitive that a water seller would be willing to pay for a technology
that decreases the demand for water. But the finding can be explained by how farmers
and tubewell owners manage water in a setting with tiny fragmented plots. Specifically,
farmers pay a fixed fee per acre of cultivated area to access water. The electricity charges,
i.e. the marginal costs of extracting the water, are borne by the tubewell owner. To deal
with the principal-agent problem, farmers do not decide on their own when to irrigate.
Instead, the owner operates the pump and decides jointly with farmers when the land
needs water, often irrigating multiple plots at a time. This way of making decisions cre-
ates incentives for the tube well owner — rather than farmers — to use water more effi-
ciently. Our experiment shows evidence that owners respond to these incentives: owners
are more than twice as likely to be involved in using the AWD pipes when subsidies are

1Subsidies are used for energy efficiency in developed countries where taxing electricity is rare (Allcott
and Greenstone, 2017). In our experimental setting, the marginal price of electricity for pumping ground-
water is about 5 cents per kilowatt-hour. This is around half of the social marginal cost of electricity gener-
ation in the United States (Borenstein and Bushnell, 2019). The external costs of electricity consumption in
Bangladesh are likely higher because the grid relies more on coal.
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targeted to them, as compared to targeting to individual farmers.
Our second finding is that water sellers do not pass through the cost savings in the

form of lower per-acre water prices. The effect of the owner treatment on water prices
during the second year is close to zero. The confidence interval on this effect allows us
to rule out price decreases of 6 percent or more. We do not find any evidence that tube
well owners pass through benefits in other ways, such as through more flexible payment
schedules. But the treatments have no effect on rice yields. Taken together, these find-
ings suggest that water sellers have enough control to use the technology to their benefit,
without compromising productivity of farmers. Providing water sellers with ownership
over technology adoption decisions is therefore more effective than targeting individual
farmers who do not face the same incentives.

We show consistency between these findings and a model where monopolist water
sellers use first degree price discrimination to extract all surplus from the effective water
that is absorbed by the crop. Using AWD involves no change in effective water — it just
reduces the amount pumped. Therefore, using the technology does not change the profit
maximizing water fee.

We contribute to the literature in two ways. First, we show how technological
change in agriculture can require targeting agents other than the end user. Standard
models of technology adoption assume that farmers make individual profit maximizing
decisions for each of their plots. The key barriers to adoption in this case become access to
credit, information, and risk-reducing instruments (Magruder, 2018). However, in reality,
fragmented landholdings make joint management of resources common. In our case, wa-
ter sellers play an important role in optimizing the use of water-saving technology. Failing
to recognize this role makes policies to promote the technology to individual farmers (the
status quo in our sample) ineffective. The issue we study is not unique to water. Small-
holder dairy farmers in Ethiopia organize into cooperatives that play an important role
in technology adoption (Chagwiza, Muradian, and Ruben, 2016). As another example,
mechanizing agriculture can improve welfare (Caunedo and Kala, 2021). But small frag-
mented plots limit the profitability of some types of mechanization (Wang et al., 2020).
Designing interventions that recognize this and coordinate adoption across farmers may
allow greater mechanization.

Second, our experiment provides new insights on reducing externalities under a
market-based allocation of natural resources. Farmers buy water from other villagers in
most of Bangladesh. Such markets exist elsewhere. We show that water sellers — rather
than buyers — face short-run incentives to increase efficiency. Subsidies for sellers make
technology effective at reducing externalities.
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Other policies to reduce groundwater depletion have been limited. For instance,
community monitoring of groundwater resources has had mixed success (Cooperman,
McLarty, and Seim, 2021; Del Carpio, Alpizar, and Ferraro, 2021). Another approach is to
ration electricity. Ryan and Sudarshan (2022) show that rationing can result in the socially
optimal amount of pumping. But rationing is still inefficient because it leads to misallo-
cation across farmers. Pigouvian taxes for pumping may then be efficient. Relatedly,
Chakravorty, Dar, and Emerick (2021) show that providing AWD to farmers conserves
water, but only in places where farmers face marginal prices for pumping. The same
incentives exist when farmers have their own wells (Lybbert et al., 2018). Overall, the lit-
erature focuses on the individual farmer and her incentive (or disincentive) to conserve.
Our work shows that policies directed at sellers can benefit them as well as reduce the
external costs of pumping.

2 Conceptual Framework

In this section we provide a simple conceptual framework that helps to further under-
stand the context and motivate the experiment. Specifically, we show how under some
circumstances, the AWD technology may lower water use, benefit the tubewell owner
through lower electricity costs, yet result in no change in water prices or rice yields.

Since plot sizes are small, it is not economically feasible for each plot to have its own
well. That is, water supply in the village is characterized by increasing returns to scale:
if a farmer invests in a pump, average costs decline as more water is delivered. Local
geography and the fixed costs of installing a pump determine the number of pumps in
the village. Water flows by gravity. There may be multiple high points, which necessitate
more than one pump per village — as we show below in the data. The tubewell owner
is still a monopolist in this segmented market — his buyers cannot obtain water from
another well owner without costly investment to transport it.

We make two assumptions about farmer demands for water that match our setting.
First, each farmer has the same demand curve. This makes sense in our context because
farmers grow the same crop on similar quality plots. Productivity dispersion — and thus
heterogeneous water demands — would create an opportunity for the owner to increase
profits through price discrimination.2 Our data show limited productivity dispersion.
Within command areas, the difference in (log) rice yields at baseline between the 10th

2Besides identical demands, other reasons exist for uniform prices. For example, villagers find price
discrimination to be inequitable, even if the costs of delivering water to certain parts of the command area
are higher.
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and 90th percentiles of the distribution is only 0.196. This contrasts with work in other
agricultural settings where the gap in TFP between the 10th and 90th percentiles of the
distribution ranges from 0.8 to 1.5 (Gollin and Udry, 2021).3 The key distinction in our
setting is that each command area is small, averaging only 13 acres in size. Farmer pro-
ductivities are far less heterogeneous within this small area as opposed to across broader
geographies.

Second, rice productivity suffers under water stress, but output plateaus at some
water level. Over-irrigating rice to the point that output declines requires vast amounts of
water. Consistent with this, field trials show that such a production function fits the data
well for cereal crops (Grimm, Paris, and Williams, 1987). As a result, demand becomes
perfectly inelastic at the quantity of water where output plateaus. Consider such a plot-
level demand curve D−1(q) as shown in the left panel of Figure 1, where q represents
the “effective” units of water absorbed by the crop aggregated over the entire season
(Caswell and Zilberman, 1986). The word “effective” implies that this is the volume of
water that reaches the roots of the plant. It is a proportion of the water extracted from
the ground, which is a function of distance to the tube well and geography. From the
farmer’s perspective, demand depends only on the effective water absorbed by the crop,
not the amount that gets pumped. Farmers have no willingness to pay for water beyond
q̄ because that is the region where output has plateaued.

However, in order to deliver q̄ units of water, the well owner must supply a larger
volume q̄s that accounts for the losses incurred during irrigation. The difference q̄s − q̄ is
the volume of water extracted that ends up not being absorbed by the crop. It depends
on a number of factors, including distance of the plot from the well, the height of the plot
relative to neighboring plots, and evapotranspiration. Water is moved along unpaved
ditches, which can make these losses large for plots furthest from the well (Tolley and
Hastings, 1960). In practice, the owner delivers water with a number of irrigations during
the season. During each irrigation, the plot is flooded up to the level of a few centimeters.

There are N farmers in the village. The owner offers the following take it or leave it
offer to the farmer of the form (qi, Ti) where qi is the water delivered on the farm and Ti is
the payment per acre the farmer makes per season. Let the farmer’s utility function from
irrigation be given by ui(qi). The farmer accepts this contract if and only if ui(qi)− Ti ≥ 0.
The monopolist can extract the total surplus from the farmer by engaging in perfect price
discrimination, but can not charge the farmer for the conveyance losses since they are dif-

3This comparison is conservative for two reasons. First, we look at variance in crop yields rather than
TFP. Second, Gollin and Udry (2021) correct their dispersion estimates for measurement error in survey
data. Variance in yield in our sample includes both productivity dispersion and measurement error.
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ficult to apportion, especially when he tries to minimize these losses by scheduling water
to groups of plots in close proximity. The monopolist must satisfy the added constraint
that the aggregate losses from conveyance are no larger than the profits from supplying
water. He solves

max
q1,..,qN

N∑
i=1

ui(qi) − ci(qi), (1)

subject to the constraint that
∑N

i=1 Ti ≥
∑N

i=1 c(qsi) where qsi has an additional subscript
i because water sent may differ by consumer. The monopoly must make non-negative
profits, that include the cost of conveyance. The textbook solution to this problem is
that the monopolist supplies the socially optimal quantity of water and extracts all of the
consumer’s surplus through the fixed charge. In the figure, if the monopolist extracts q̄s
to deliver effective water q̄, then he extracts the entire surplus which is the shaded area
A as shown in the figure. Since all farmers are identical, this transfer payment is charged
in the form of a seasonal per-acre fee, which we observe in the data to be the same for all
farmers in the village.4

The right panel in Figure 1 shows the aggregate demand for the whole command
area, and the average and marginal variable costs of water supply. The owner faces a
constant cost of electricity, which is the only variable input to supplying water. Thus,
marginal costs are constant. We denote the aggregate quantities for effective water and
water supplied, as Q̄ and Q̄s, respectively. Note that area B — the shaded area below
the demand curve and above the MC curve — denotes the producer surplus on effective
water obtained by the monopolist.

The monopolist maximizes profits by providing Q̄ units of effective water, as long
as marginal costs intersect the demand curve below the point at which it becomes per-
fectly inelastic. But the owner has imperfect information on how much water needs to be
supplied for the crop to receive this amount. The foregone profit from providing less than
Q̄ can be high because this would require the owner to reduce per-acre fees. As long as
the marginal cost of pumping is low, which is likely the case due to electricity subsidies,
it is better for the owner to “play it safe” and ensure that each field receives at least the
optimal amount.5 We show the amount of water extracted as Q̄s. The owner earns a pro-
ducer surplus equal to area B, but pays for electricity to pump water that is not effective,

4If farmers’ demand curves were not identical, e.g., due to their differential productivities, the monopo-
list may still levy a uniform per acre fee, but some farmers may be unable to pay this seasonal rate if their
surplus was lower. This may explain why some plots are left fallow during the cropping season as observed
in the satellite data.

5The per-unit cost of electricity for agricultural users in our sample is $0.05 per kwh. The average gen-
eration cost, not including other sources of variable costs, is $0.074 per kwh (USAID, 2021).
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which lowers aggregate surplus by areas C+D.
Now we consider the role of the AWD technology. Being able to see the below-

ground water level allows the owner to reduce the total number of irrigations. Irrigating
less frequently saves on distribution losses. The aggregate volume of water declines from
Q̄s to Q̂s, the extent of the reduction may differ among individual plots. The aggregate
losses to the owner now fall to area C. However, the volume of effective water delivered
to each farmer remains the same, meaning that yield is unaffected. Consumer surplus
remains the same and thus the monopolist can maintain the per-acre water fee of Ti, as
before the treatment.

The figure illustrates a case where the AWD tool reduces the consumption of elec-
tricity by helping the owner to determine the amount of applied water to achieve effective
water Q̄. However, a different scenario would yield the opposite prediction. The owner
chooses the value of Q̄s. If they are providing too little water, then the amount of effective
water before the treatment will be less than Q̄. In that case, using AWD will inform the
owner that more applied water is needed. This increases the fixed payment Ti, crop yield,
and the amount of electricity used.

In sum, the conceptual framework clarifies two possible scenarios: one where the
AWD tool conserves electricity and one where it could increase electricity but allow the
owner to extract more consumer surplus from farmers. Motivated by this framework,
our experiment investigates how technology changes the equilibrium in water markets.
In particular, we can compare the size (and sign) of area D across the different approaches
to subsidizing AWD.

3 Experimental Design and Data

Sample, Baseline Data Collection, and Interventions

Our experiment takes place in 360 villages in the Mymensingh and Kishoreganj districts
of Bangladesh. Our partner NGO helped identify 40 villages in each of 9 upazilas. To be
included, the villages needed to be using electricity to pump groundwater for production
of boro (dry-season) rice. Once in the village, a surveyor first identified all of the electric
pumps currently in use. The average number of active pumps was 2.6 per village. When
there were multiple pumps, we randomly selected a single one to be included in the
experiment. The resulting sample has 360 unique villages / pumps / command areas.6

6The command area is the land that draws water from the pump. We use the terms village, pump, and
command area interchangeably throughout the text.
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A surveyor first did a village-level baseline with the pump owner. These surveys
took place in December 2018. We collected the names of all farmers buying water from
the pump, the GIS boundaries of the command area, the GIS coordinates of the pump,
and water prices during the most recent season. We then randomly selected eight people
for a farmer-level baseline. This amounts to roughly half the farmers from the command
area. The survey included questions about agricultural production during the previous
year, the relationship between the farmer and tube well owner, and information on who
decides when a field should be irrigated.

Traditionally, farmers and tube well owners decide when fields should be irrigated.
The standard practice is to irrigate, wait for several days until there is no more standing
water, and then re-flood the field. The AWD device provides more information on when
water should be re-applied. Specifically, it allows one to see how much water is below the
surface of the soil. Rather than re-flood the field right away, the pipe allows the farmer to
wait until the water level is 15 centimeters below ground level. This water level indicates
that water in the soil is falling below the root zone of the crop, at which point the crop
needs more irrigation. By extending the periods of drying, using the tool reduces the total
amount of water applied throughout the season. Agronomic trials find that using AWD
reduces water use by at least 30 percent without changing crop yield (Yao et al., 2012;
Howell, Shrestha, and Dodd, 2015).

We delivered the interventions at the time of planting for the boro rice crop, which
the median village in our sample plants on January 20th.7 Right before this time, we of-
fered subsidized AWD pipes in the treated villages. Using the nine upazilas as strata, we
randomized our sample of 360 villages into four groups. First, 45 villages (5 per upazila)
make up the control group.

Second, we offered AWD subsidies directly to farmers with door-to-door visits in
105 villages, i.e. 11-12 villages per upazila. This arm of the experiment mirrors the status
quo where government extension workers target new technologies to farmers. In our
case, someone went to each farmer’s house, told them how the AWD device works, and
offered it to them at the subsidized price.

The third arm provided the same subsidies and information, but the enumerator
gave the offer only to the tube well owner. We allowed the owner to choose their desired
quantity, with the upper limit being the total number of farmers in the command area.
This arm of the experiment provides a test of whether the technology is used more effec-

7Planting dates do not vary much within villages. At baseline, village fixed effects explain 78.4% of the
variation in planting dates. Boro rice requires irrigation. Planning irrigation requires crops to be at a similar
stage of growth, making it necessary for farmers to plant at the same time.
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tively by water sellers, as opposed to farmers. It contrasts a standard model where the
farmer makes technology decisions based on individual returns with one where another
villager is involved in those decisions.

Fourth, we organized village meetings in the last group of 105 villages. As we show
below, irrigation management involves collective decision making. We had enumerators
invite all farmers in the command area to the meeting. The tube well owner has land in
the command area in most cases. As such, the owner was often part of the meeting. We
offered subsidies at the meeting as a way to facilitate joint decisions on adoption and use.
We hypothesized that meetings would allow farmers to plan and jointly decide whether
to purchase and how to use the AWD pipes. This could make the subsidies more effective
because irrigation water is frequently delivered to multiple farmers at a time.

We offered the AWD pipes at a random price of either 30 or 60 Bangladeshi Taka
(approx. 85 BDT = 1 USD). These correspond to subsidies of 77 and 55 percent, respec-
tively.8 For logistical reasons, the price was randomized at the union level, of which we
have 57 in the experiment.9 Of the 105 door-to-door villages, 55 received the high subsidy
and 50 received the low subsidy. There are 54 high subsidy and 51 low subsidy meeting
villages. The sample sizes are 58 and 47 for owner villages.

Our teams returned one year later around December 2019 to again offer subsidized
AWD pipes in the 315 treatment villages. We did this for two reasons. First, farmers do
not always save the pipes for use next season, even though they can be re-used. Second,
the additional visit allows farmers or water sellers to purchase pipes to use on more land
— especially if the first year was a trial period. The subsidy amounts remained the same
in each village. Villages stayed in the same treatment group for how the subsidies were
offered.

Baseline Summary Statistics

Table 1 shows baseline characteristics across treatment arms.10 The table shows three
notable features of our sample. First, each pump covers a small amount of land where
many farmers manage contiguous plots. The average pump in the control group irrigates
about 13 acres and serves 16 farmers. Farmers cultivate an average of 0.71 acres in the
command area during the dry season. These 0.71 acres usually consist of more than one

8In Chakravorty, Dar, and Emerick (2021), we asked 10 shop owners for quotes to produce AWD
pipes. Each shop owner provided quotes for two different randomly determined quantities. The estimated
marginal cost from these data is 133 BDT per AWD pipe.

9Unions are administrative units one level above villages, but one level below upazilas.
10The variation across subsidy levels turns out to be less important for our results. We compare charac-

teristics across the three main treatment arms.
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plot.11 As a comparison, 40 acres is a standard plot size in the U.S. midwest. In our setting,
that amount of land would be cultivated by almost 50 farmers (see Figure S1 for a visual
of this comparison).

Second, multiple plots can be irrigated at a time. We asked each farmer about how
irrigation is managed for one of their randomly selected plots in the command area. Al-
most 36 percent in the control group respond that the plot is irrigated at the same time as
other plots, which are cultivated by other farmers.

Third, the tube well owner helps decide when to irrigate for 74 percent of plots. The
owner decides on their own in 42 percent of cases, while it is a joint decision the remain-
ing 32 percent of the time. Owner involvement correlates strongly with the practice of
irrigating multiple plots at a time. Approximately 24 percent of plots where the owner is
not involved are irrigated jointly with others. This figure increases by almost 75 percent
to 41.8 percent when the owner helps decide when to irrigate. Overall, these descriptive
statistics show that coordination and planning around irrigation for a single plot includes
multiple people including, sometimes exclusively, the water seller.

Electricity Data Collection

We use the amount of electricity used by the pump as our main outcome variable. Elec-
tricity fuels groundwater pumping. Electricity generation emits greenhouse gases and
electricity in our sample is priced below its social marginal cost. Subsidizing technology
to pump less groundwater aims to reduce this externality.

Our survey teams measured electricity usage directly over the next two seasons.
Starting in the first year, we obtained an initial reading of the electricity meter. Most of
these readings were done in December 2018 and January 2019. A surveyor recorded the
value on the meter and took a picture for verifying consistency with future readings. We
repeated this process two more times, once in March and another time in late April right
before the harvesting time. Based on this timing, we use the reading from late April as
the end-of-season electricity observation.

While electricity provides an objective measure of groundwater pumping, we did
not obtain two usable electricity readings for some villages. There are a few common
reasons. The meter can stop working and need to be replaced in the middle of the season.
In some cases, the incorrect meter was read at either the beginning or end of the season.
Whenever possible, we extracted the missing data from a copy of the electricity bill, which
we viewed during a later survey with the tube well owner. Overall, we obtain first-year

11The average number of plots in the command area is 2.45 per farmer.
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electricity usage for 307, or 85 percent of villages.
Enumerators repeated a similar process during the second year. The initial readings

were taken towards the end of January or in early February. The final readings were
taken in June of 2020, a few weeks after harvesting. We again relied on electricity bills
in cases where they could provide information to correct malfunctions or incorrect meter
readings. We have second-year electricity usage for 305 of the 360 villages. Table S1 shows
that the missing outcome data is uncorrelated with treatment.

Followup Surveys

We collected follow up surveys after both the 2019 and 2020 seasons. For both seasons,
we surveyed the same 8 farmers that participated in the baseline. A total of 2,820 farmers
(8 farmers in each of 360 villages) were surveyed in July of 2019, after the first year of the
study. We attempted phone surveys with the same farmers again after the 2020 season in
September, but surveyors were only able to reach 2,242 (79.5 percent) of the sample.12

We used surveys with the tube well owners to collect other village-level outcomes.
Our first survey in July 2019 collected information on water prices, how many people
negotiated prices, who negotiated prices, and salaries paid to linemen who manage ir-
rigation. We did a similar phone survey with owners after the second season in June
2020.

4 Results

4.1 Regression Specification

Our main analysis regresses each outcome on treatment indicators, upazila fixed effects,
and individual- or village-level controls. We use the following specification:

yvs = β0 + β1ownervs + β2doortodoorvs + β3meetingvs + xvsδ + αs + εvs, (2)

where yvs is the outcome in village v and upazila s, and ownervs, doortodoorvs, andmeetingvs
are indicators for the three treatment arms. We include all the baseline variables from Ta-
ble 1 as control variables to improve precision.13 Our randomization was stratified by

12Table S1 shows that attrition from this phone survey is uncorrelated with the treatments.
13We use village averages of the farmer level characteristics.
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upazila. We therefore include upazila fixed effects in all specifications. We report het-
eroskedasticity robust standard errors. Some of our analysis uses farmer-level data. For
this analysis, we use the same specification, but cluster standard errors at the village level.

4.2 Take up of Energy Efficient Technology

Farmers purchased the most pipes in the meeting villages. Column 1 in Table 2 shows
that sales increased by 2.21 pipes per village in meeting villages. This represents a 20.8
percent increase relative to the average of 10.7 farmers that bought in door-to-door vil-
lages. Owners purchased about 0.55 pipes more than farmers in door-to-door villages,
but we cannot reject equal demand in the owner and door-to-door villages. This table
shows aggregate results across the two subsidy levels. Table S2 shows results by subsidy
level.

Only a subset of the purchased pipes went on to be used. Actual uptake is similar
for the three treatments. Column 2 in Table 2 shows that an average of 4 pipes were used
in the door-to-door treatment. The point estimates for meeting and owner villages are
small and statistically indistinguishable from zero.

We gave the option to buy AWD pipes again before the second year. But few were
sold. We sold an average of 1.6 in the door-to-door villages. Again, the effect of meetings
on sales is large and significant in column 3, but actual installations of the device during
year 2 are not significantly different between the three treatment arms (column 4).

We have two key takeaways from the analysis on uptake. First, the number of pipes
used is similar across treatments — something we also show with the farmer followup
surveys (Figure S2). Second, farmers and owners use the technology on select plots of 3
or 4 farmers, despite buying more. The technology provides information on soil moisture
and hence when to irrigate. That information can help with planning for multiple plots,
particularly when the plots are so close together and have similar soil. Thus, the AWD
pipes do not need to be used on every plot to provide information that is relevant for the
whole command area. Building on this, we we find that across all three treatments, pipe
installations were more likely on the plots of owners and their families (Figure S3).

4.3 Electricity Savings from Technological Subsidies

We use meter readings from two points in time to approximate electricity usage. The
baseline reading occurred early in the season. The final reading occurred towards the end
of the season. We compute the total electricity usage for village v in year t as follows:
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elecvt =
meterfinalvt −meterbasevt

datefinalvt − datebasevt

× (dateharvestvt − dateplantvt ). (3)

The terms meterbasevt and meterfinalvt represent the baseline and final readings, respectively.
The fraction on the left gives the estimated daily usage because the numerator is electricity
consumed and the denominator is the number of days in between the two readings. Our
baseline reading often happened before planting. We use the planting date as the baseline
date in these cases. Similarly, we use the harvesting date as the final date when our final
reading happened after harvesting. No electricity is used outside the growing season
because the pumps are used solely for irrigating boro rice.

Table 3 shows our main results where the outcome is the log of seasonal electric-
ity usage. In column 1, the point estimates for year one are negative, but imprecisely
estimated and statistically insignificant. This may be explained by hesitancy to use the
technology. We find a strong correlation between the adoption rate in year 1 and electric-
ity usage (Table S4). Turning to column 2, treatment villages consumed less electricity for
irrigation in year 2. Targeted subsidies to the tube well owner save the most electricity.
Specifically, the point estimate of -0.478 log points translates to a 38 percent decrease in
the amount of electricity used for irrigation. The average tube well in the control group
uses about 4,670 kwh in a season. Therefore, the amount of electricity saved converts
to almost 1,775 kwh. To interpret the magnitude of the estimate, the average residential
customer in the United States uses about 10,715 kwh in a year. The electricity saved from
the AWD subsidies to water sellers represents 16.5 percent of average annual residential
consumption in the United States.

We can reject the hypothesis that targeting subsidies individually to farmers pro-
duces the same effects in year 2 as targeting them to tube well owners. Providing sub-
sidies through village meetings, on the other hand, lowered electricity use by around
30 percent in year 2. We cannot reject equality of this effect and the effect of targeting
owners. However, the subsidies are more costly to provide in this way because the meet-
ings led to greater uptake without saving more electricity. Column 3 shows the estimates
from pooling the two years together. The strongest effects continue to be in the owner
arm because of the greater effectiveness of that treatment in year 2. The treatment effects
on year 2 electricity consumption are robust to measuring electricity in levels instead of
logs. Leaving the control variables out of the regression does not meaningfully change
the results (Table S3).

Differences in take up across the treatments cannot explain the effectiveness of sub-
sidizing conservation technology for water sellers. Table 2 showed that sellers buy and
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install the same number of AWD devices as when farmers make individual decisions.
Instead, we find evidence that when tube well owners buy the AWD devices, they are
more likely to participate in using the devices to plan irrigation. We asked each adopter
during the year 2 followup about who is monitoring the AWD pipe. Table 4 compares the
responses across treatments. Column 1 shows that farmers with AWD pipes on their field
in owner villages are about 21 percentage points less likely to report that they themselves
monitor the pipe. Turning to the rest of the table, we find that owners are 13.7 percentage
points more likely to monitor the pipes in villages where they were targeted with subsi-
dies. This effect amounts to a more than doubling in the likelihood of owner involvement
— relative to the door-to-door or meeting villages.

These findings offer one mechanism that can explain our main result: the owner
more actively participates in managing the AWD technology to save water when they
receive subsidy benefits. In contrast, farmers are more likely to oversee the technology
when they themselves make the adoption decision. But individual farmers face no in-
centive to conserve water because of fixed prices. Well owners, on the other hand, have
incentives to use the technology in a way that reduces pumping.

4.4 Farm-Level Outcomes

By reducing water costs, the AWD treatment benefits water sellers who pay for the elec-
tricity used in pumping. We next ask whether any benefits are passed through to farmers
during the second year. For this, we use the follow up survey with farmers after year 2
harvesting.

The results in Figure 2 show that the treatments do not affect individual farmers.
Starting with rice yields, farmers in all three groups obtain similar yields as those in the
control group. The 95 percent confidence interval allows us to reject yield decreases of
7.1% or more, or yield increases of 6.2% or more. Agronomic studies show that practicing
AWD reduces water use without affecting yield. The null effects on rice productivity align
with the agronomic trials.

We investigate two other ways in which benefits could trickle down to farmers.
First, we collected data from farmers on the per-acre water prices charged by tube well
owners. We find no evidence that prices paid by farmers adjust to the water savings of
the owner. In the middle panel of Figure 2, we can reject price decreases of 5.7% or more
during year 2 in the owner treatment — the arm or the experiment where electricity costs
fell by about 38 percent. Water prices and crop yield for farmers stayed the same, but
electricity costs for tube well owners decreased.
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Water sellers may pass through benefits in other forms, however. One possibility
is through their flexibility in when they require payments from farmers. Sellers some-
times allow farmers to pay for water in multiple installments, or they allow payments to
be made later in the season rather than upfront near planting. Unlike water prices, the
timing of payments varies within villages.14 We calculate a simple measure of payment
flexibility. To do this, we collected dates and amounts for each installment paid to the
owner. We use planting and harvesting dates to compute the share of the total water bill
that is paid after the first half of the season, including post harvesting. On average during
year 2, farmers pay 72 percent of the water bill after the midway point in the season. The
top panel in Figure 2 shows that the owner treatment had no effect on this measure of
payment flexibility. If anything, the door-to-door treatment had a modest positive effect,
even though the electricity savings were the smallest in that arm.

In combination, these findings indicate that owners retain the rents from using tech-
nology to conserve water. This happens even though farmers in the owner villages esti-
mate that less electricity is being used, speak to more other farmers about irrigation, and
are more likely to negotiate water prices after the first year (Table S5). Monopoly water
sellers rationing quantities can explain the lack of price effects. They set per-acre prices to
capture consumer surplus from water buyers. Each farmer’s demand curve is based on
the amount of effective water that the crop absorbs, not the amount of pumped water or
electricity usage. The AWD technology helps the water seller use water more efficiently
without affecting crop output of farmers. By not affecting the amount of consumer sur-
plus obtained by farmers, the monopoly seller does not need to lower water prices.

4.5 Costs per unit of Energy Saved

We estimate that subsidizing technology for tube well owners costs about 1.7 cents per
kwh saved. To arrive at this figure, we calculate annual electricity savings as 4785.97 ∗
(e−.289 − 1) = 1, 200 kwh because the average control village used 4785.97 kwh annually,
and the owner treatment reduced log electricity usage by .289 (Table 3 column 3). The
total estimated savings from the intervention are therefore 2,400 kwh. We focus on the
owner villages because the experimental results suggest that would be the most effective
way to scale the subsidies.

We estimate two components of costs. First, we sold 12.93 pipes per village in the
owner villages across the two years. Based on surveys with 10 local engineering shops, we

14Village fixed effects explain over 90% of the variation in water prices. They explain 54 and 63 percent
of the variation in the number of installments during years 1 and 2, respectively.
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estimate average costs of producing a single pipe of 135 taka = $1.62.15 The corresponding
total costs of producing the AWD pipes is then $20.95 per village. Second, we assume $10
delivery costs each year to make a total cost of $40.95. This implies a cost per conserved
kwh of $1.7.

The Bangladesh Department of Environment estimates that their electricity grid
produces 1.47 lbs of CO2 per kwh of generation. Applying this figure, the treatment
effect from the owner intervention amounts to 1.6 MT of CO2. A $25.6 cost per ton of
avoided CO2 implies that the intervention is one of the more cost effective ways of reduc-
ing emissions (Gillingham and Stock, 2018). Factoring in the benefits of lower water bills
for owners would cause the cost per unit of avoided CO2 emissions to become negative.
To see this, agricultural electricity is priced at 4 taka per kwh, meaning that electricity
savings of 2,400 kwh translate to about $115 of avoided costs for water sellers.

Lastly, we show that subsidizing technology for Bangladeshi tube well owners costs
less per unit of energy saved than many interventions for reducing energy usage of homes
and businesses. Figure 3 compares the costs per unit of energy saved with estimates that
we compiled from 10 studies on energy efficiency.16 Our estimate falls in line with the
more cost effective of these interventions.

Our estimate might be conservative since we have assumed that any energy bene-
fits disappear after two years. Additionally, most agronomic trials find that using AWD
reduces methane emissions from rice paddies, an environmental benefit that we do not
factor in. On the other hand, there may be components of costs that we fail to include,
such as if there are costs of looking into the AWD pipes. Due to this, we acknowledge
that our cost effectiveness estimate gives an approximation.

5 Conclusion

Management decisions in developing country agriculture can extend beyond the small-
holder farmer. In the case of irrigation water, a valuable resource that is dwindling in
many places, water sellers in Bangladesh charge fixed usage fees and effectively ration
water to farmers. Water is pumped using electricity, which emits greenhouse gases. Tech-
nology exists to use water more efficiently and limit these externalities. But the standard
model of technology adoption assumes farmers make individual decisions. It fails to ac-
count for how water management involves multiple agents who face different incentives.

15These surveys were done in 2018 during the data collection for Chakravorty, Dar, and Emerick (2021).
Each shop owner was asked to provide a quote for producing two different quantities. The estimated
marginal cost from these data points is 133 taka and the average cost is 135 taka.

16We discuss the details of how we estimated cost effectiveness from each study in Appendix A3.
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This paper finds that subsidizing irrigation technology can reduce externalities from
groundwater pumping. The effectiveness of the subsidies depends on who receives them:
subsidies to water sellers are most effective, likely because the structure of contracts cre-
ates incentives for them to conserve. Our results show that farmers, on the other hand, do
not benefit from receiving subsidies for water-saving technology. From a policy perspec-
tive, the Bangladesh government lists the technology we study as one of their intended
contributions to reduce greenhouse gas emissions under the Paris Agreement. Yet, cur-
rent efforts to promote it involve training individual farmers. Our main finding sheds
light on how achieving this policy goal may become easier when accounting for how the
institutional environment incentivizes water sellers to conserve.
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Tables and Figures

Figure 1: Graphical representation of technology’s effect on water use, prices, and seller
profits
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Notes: The figure gives a graphical representation of the water market in our experiment. There are N
homogenous consumers of water (farmers) who buy from a monopolist water seller (tube well owner).
Panel A on the left shows the water demand curve of the representative farmer. The demand depends
only on the amount of effective water which is the amount absorbed by the roots of the crop. The demand
curve becomes perfectly inelastic at q̄ because water beyond q̄ does not increase yield. Tube well owners
charge fixed prices per acre of cultivation. The owner sets that price equal to area under the demand curve
(Area A), i.e. practices perfect price discrimination. To deliver q̄ units of effective water, the owner needs
to extract q̄s units, due to conveyance losses. Panel B on the right shows the market equilibrium. The
perfect price discriminating monopolist captures all the area under the demand curve as revenue, earning
a producer surplus of B. The marginal cost of extracting water consists entirely of electricity costs, which
are constant. Delivering Q̄ total units of effective water requires extracting Q̄s units. This reduces
producer surplus by area C+D. The AWD technology helps the owner to optimize irrigation. That is, it
allows him to reduce the amount of extracted water without reducing the amount effectively absorbed by
the crop. The amount of applied water moves from Q̄s to Q̂s, which causes the loss from pumping more
than is absorbed to fall to area C. The lower electricity costs equal to area D benefit the owner. But the
amount of effective water to the crop is unchanged. Crop yields stay the same and the monopolist is still
able to charge the area under the demand curve since the same amount of effective water is delivered.
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Table 1: Summary Statistics and Covariate Balance by Treatment

(1) (2) (3) (4) (5)
Control Door-to-Door Meeting Owner p-value

Command areas (N=360)

Number farmers 16.2 17.5 19.5∗∗ 17.5 .106
(7.3) (8.2) (9.1) (7.8)

Total acres: GIS 12.7 14.4 16 13.5 .53
(10) (12) (18) (13)

Water price per acre 5,677 5,600 5,535 5,751 .369
(971) (1,152) (1,048) (1,238)

Baseline farmers (N=2958)

Age 43.9 43.9 43.7 43.8 .997
(13) (12) (13) (12)

Years education 5.62 6.11 5.98 6.02 .759
(4.6) (4.3) (5) (4.5)

Boro rice acres 1.02 1.22 1.08 1.05 .525
(.78) (3.1) (.92) (2.7)

Boro rice acres in .711 .79 .822∗ .73 .258
command area (.45) (.69) (1.2) (.51)

Heard of AWD .164 .115 .131 .111 .529
(.37) (.32) (.34) (.31)

Livestock owned 2.23 2.51 2.62∗ 2.42 .287
(1.8) (2.7) (5.1) (2)

Number crops 2 2.01 2 2 .956
(.14) (.23) (.18) (.22)

Joint irrigation .358 .395 .355 .369 .934
with others (.48) (.49) (.48) (.48)

Owner helps decide .742 .765 .737 .715 .854
irrigation (.44) (.42) (.44) (.45)

Immediate family of .263 .215 .22 .256 .383
tubewell owner (.44) (.41) (.41) (.44)

The table shows mean values of baseline characteristics for control, door-to-door, meeting, and owner villages. Columns 1-4 show
means with standard deviations below in parentheses. We assess balance by regressing each characteristic on the three treatment
variables and upazila (strata) fixed effects. The asterisks in columns 2-4 denote a statistically significant difference with the control
group at the 1% ∗∗∗, 5% ∗∗, or 10% ∗ levels. Column 5 displays the p-value of the joint test of the indicators for the three treatments.
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Table 2: Technology Uptake Across Treatments
Year 1 Year 2

(1) (2) (3) (4)
Buy Install Buy Install

Meeting 2.21∗∗∗ 0.79 0.87∗∗∗ 0.63
(0.77) (0.70) (0.28) (0.45)

Owner 0.55 -0.17 0.38 0.29
(0.76) (0.65) (0.27) (0.39)

Upazila FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes
Mean Outcome in Door-to-Door 10.65 3.97 1.60 2.82
P-value: Meeting = Owner 0.037 0.146 0.121 0.518
R2 0.540 0.209 0.106 0.166
Observations 313 313 313 311

The table shows village-level regressions from the AWD pipe sales (columns 1 and 3) and the follow up
surveys with tube well owners (columns 2 and 4). The sample consists of the 315 villages in the
door-to-door, owner, and meeting villages. The omitted group in each regression is the 105 villages where
subsidies were offered door-to-door to farmers. The dependent variable in columns 1 and 3 is the total
number of pipes that were sold in the village, either during the door-to-door sales, meeting, or direct visit
to the well owner. The dependent variable in columns 2 and 4 is the number of pipes that were installed in
the command area, which during year 2 can include ones that were bought in addition to those saved from
the previous year. Many purchased pipes go unused, explaining the difference in mean outcomes between
columns 1 and 2. The controls include all of the covariates in Table 1. Heteroskedasticity robust standard
errors are displayed in parentheses below the point estimates. Asterisks indicate statistical significance at
the 1% ∗∗∗, 5% ∗∗, or 10% ∗ levels.
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Table 3: Effects of Technology Subsidies on Electricity Usage for Groundwater Pumping
(1) (2) (3)

Year 1 Year 2 Both Years
Door-to-Door -0.116 -0.191 -0.152

(0.207) (0.161) (0.154)

Meeting -0.143 -0.304∗ -0.217
(0.192) (0.171) (0.153)

Owner -0.129 -0.478∗∗∗ -0.289∗∗

(0.180) (0.165) (0.144)

Upazila FE Yes Yes Yes

Controls Yes Yes Yes
Mean Elec in Control (kwh) 4902.23 4669.70 4785.97
P-value: Door = Meeting 0.862 0.374 0.571
P-value: Door = Owner 0.930 0.025 0.214
P-value: Meeting = Owner 0.916 0.184 0.505
R2 0.359 0.347 0.329
Observations 307 305 612

The table shows village-level regressions of log electricity consumption on the treatment indicators,
upazila fixed effects, and village- and household-level controls. The dependent variable in all three
regressions is the log of electricity usage, as described in Equation (3). Columns 1 and 2 show the results
separately for the first and second years. Column 3 shows pooled results where both years are pooled
together. The controls include all of the covariates in Table 1. Additionally, the pooled regression in
column 3 includes a dummy variable for year 2. Heteroskedasticity robust standard errors are displayed
in parentheses below the point estimates in columns 1 and 2. Standard errors are clustered at the village
level in column 3. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, or 10% ∗ levels.
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Table 4: Involvement of farmers and owners in managing AWD pipes in year 2
AWD pipe overseen by:

(1) (2) (3) (4)
Farmer Family Owner Lineman

Meeting -0.185∗∗ 0.009 -0.026 -0.010
(0.077) (0.055) (0.058) (0.065)

Owner -0.212∗∗∗ 0.060 0.137∗ -0.102
(0.076) (0.060) (0.069) (0.083)

Strata FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes
Mean in Door-to-Door 0.618 0.235 0.110 0.463
P-value: Meeting = Owner 0.742 0.305 0.025 0.227
R2 0.248 0.406 0.224 0.388
Observations 423 423 423 423

The table shows regression results from the year 2 follow up survey with farmers. The data are limited to
the farmers that adopted AWD on the randomly selected plot asked about during the survey. Respondents
were asked who oversees the AWD pipe for water management. They could give multiple responses.
Each column in the table shows a regression of whether the respondent listed themselves (column 1),
family members (column 2), the tube well owner (column 3), or the lineman (column 4) as a person who
helps oversee the AWD pipe. We limit the data to the meeting, owner, and door-to-door villages. The
door-to-door villages are the omitted group in each regression. We cluster all standard errors at the village
level. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, or 10% ∗ levels.
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Figure 2: Treatment effects on outcomes for farmers
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Notes: The figure shows regression results from the year 2 follow up survey with farmers. We show
results for three outcome variables: a payment flexibility measure, the log of water prices per acre, and the
log of rice yield. The payment flexibility measure is defined as the share of the total water bill that was
paid during the second half of the season, which we calculated using village-level planting and harvesting
dates along with the dates for each of the installments that were paid to the tube well owner. We regressed
each outcome on the treatment indicators, strata fixed effects, and the control variables listed in Table 1.
The dots in the figure show the point estimates (treatment effects) from the regressions, while the bands
show 95% confidence intervals. All standard errors are clustered at the village level.
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Figure 3: Comparison of costs per unit of energy saved with studies on energy efficiency
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Notes: The figure compares our approximation of cost effectiveness to estimates from 10 papers on
residential or industrial energy efficiency throughout the world. The vertical blue line shows the estimate
from the owner treatment in our study. For each paper in the literature, the dot provides the estimated cost
in USD per mmBTU of energy saved by the intervention. See Appendix A3 for details on how we used
information from each paper to arrive at the cost effectiveness figure.
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A1 Supplementary Tables

Table S1: Missing outcome data across treatment groups
Village Year 2 Farmer

Electricity Followup

(1) (2) (3)
Year 2 Year 1 Year 2

Door-to-Door -0.013 0.016 0.048
(0.063) (0.061) (0.045)

Meeting 0.028 -0.029 -0.003
(0.063) (0.059) (0.043)

Owner -0.024 -0.025 0.044
(0.061) (0.060) (0.042)

Upazila FE Yes Yes Yes
Mean Level in Control 0.156 0.156 0.194
P-value: Door = Meeting 0.395 0.334 0.202
P-value: Door = Owner 0.823 0.389 0.912
P-value: Meeting = Owner 0.268 0.930 0.208
R2 0.129 0.095 0.234
Observations 360 360 2876

The table shows the relationship between missing data and treatment. Columns 1 and 2 are for electricity
usage, our main outcome variable. Column 3 is for non-response in the year 2 follow up phone survey
with farmers. The dependent variable in columns 1-2 is an indicator for villages where we have missing
electricity data. The dependent variable in column 3 is an indicator for not being reached during the
survey. The asterisks denote statistical significance at the 1% ∗∗∗, 5% ∗∗, or 10% ∗ levels.
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Table S2: Differential Price Sensitivity Across Treatments
Year 1 Year 2

(1) (2) (3) (4)
Buy Install Buy Install

High Price -4.28∗∗∗ -0.91 -0.35 -0.02
(1.19) (0.91) (0.34) (0.43)

Meeting 2.78∗∗∗ 2.04∗∗ 1.25∗∗∗ 1.05
(0.96) (1.01) (0.41) (0.78)

Owner 0.14 0.22 0.28 0.31
(0.95) (0.78) (0.37) (0.48)

High Price * Meeting -1.02 -2.58∗∗ -0.75 -0.86
(1.48) (1.19) (0.62) (0.98)

High Price * Owner 0.67 -0.98 0.18 -0.05
(1.42) (1.04) (0.49) (0.65)

Upazila FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes
Mean Outcome in Door-to-Door 10.65 3.97 1.60 2.82
P-value: Meeting = Owner 0.007 0.067 0.042 0.381
P-value: Meeting*High = Owner*High 0.304 0.169 0.153 0.442
R2 0.610 0.254 0.128 0.171
Observations 313 313 313 311

The table shows village-level regressions from the AWD pipe sales (columns 1 and 3) and the follow up
surveys with tube well owners (columns 2 and 4). The sample consists of the 315 villages in the
door-to-door, owner, and meeting villages. The omitted group in each regression is the 105 villages where
subsidies were offered door-to-door to farmers. The dependent variable in columns 1 and 3 is the total
number of pipes that were sold in the village, either during the door-to-door sales, meeting, or direct visit
to the well owner. The dependent variable in columns 2 and 4 is the number of pipes that were installed in
the command area, which during year 2 can include ones that were bought in addition to those saved from
the previous year. Many purchased pipes go unused, explaining the difference in mean outcomes between
columns 1 and 2. The variable High Price is a binary variable for unions where prices were randomly set
at 60 BDT per device. The price in the remaining villages was 30 BDT. The controls include all of the
covariates in Table 1. Standard errors are clustered at the union level (the unit of price randomization).
Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, or 10% ∗ levels.
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Table S4: Correlation between village AWD adoption and electricity use
Year 1 Year 2

(1) (2) (3) (4)
At least 1 AWD -0.186 -0.248∗

Device (0.119) (0.128)

AWD adoption rate -0.444∗∗ -0.344
(0.211) (0.246)

Upazila FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes
R2 0.355 0.363 0.371 0.381
Observations 303 303 268 267

The table shows the correlation between usage of AWD and electricity usage in year 1 (columns 1-2) and
year 2 (columns 3-4). We use the follow up survey with 8 farmers per village to estimate the share of
farmers in the command area using AWD. Columns 1 and 3 regress the log of electricity consumption on a
binary variable for at least one farmer reporting AWD use on their plot, upazila fixed effects, and the
control variables from Table 1. Columns 2 and 4 show results from a similar regression, but where we use
the share of farmers adopting AWD instead of an indicator for at least one adopter. Heteroskedasticity
robust standard errors are displayed in parentheses below the point estimates. Asterisks indicate
statistical significance at the 1% ∗∗∗, 5% ∗∗, or 10% ∗ levels.
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Table S5: Treatment effects on farmer estimates of village electricity usage, communica-
tion about irrigation, and negotiating water prices

Electricity N Farmers Spoken to N Farmers Negotiate

(1) (2) (3) (4) (5)
Year 1 Year 1 Year 2 Year 1 Year 2

Door-to-Door -0.167∗∗ 0.487 0.626∗∗∗ 0.743 0.004
(0.080) (0.299) (0.229) (0.763) (0.722)

Meeting -0.157∗ 0.699∗∗ 0.207 1.066 0.361
(0.081) (0.319) (0.210) (0.781) (0.761)

Owner -0.163∗∗ 0.681∗∗ 0.507∗∗ 1.880∗∗ 0.522
(0.082) (0.332) (0.203) (0.779) (0.737)

Strata FE Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes
Mean Level in Control 2.032 1.900 4.279 4.136
P-value: Door = Meeting 0.861 0.393 0.061 0.664 0.610
P-value: Door = Owner 0.943 0.473 0.580 0.120 0.422
P-value: Meeting = Owner 0.920 0.952 0.128 0.282 0.824
R2 0.593 0.245 0.289 0.238 0.235
Observations 1979 2784 2228 348 345

The table shows treatment effects from both the farmer follow up surveys (columns 1-3) and the surveys
with tube well owners. Column 1 shows results from the follow up survey in year 2 where farmers were
asked to estimate the overall electricity usage in the current season. The dependent variable is the log of
the farmer’s estimated electricity usage. Columns 2 and 3 show results on the number of farmers that the
respondent spoke to about dry-season irrigation. This question was asked during both year 1 and year 2
follow ups. The outcome variable in columns 4 and 5 is the number of farmers that negotiated water
prices. We asked this to tube well owners during the follow up surveys with them after each season.
Standard errors in columns 1-3 are clustered at the village level. We report heteroskedasticity robust
standard errors in columns 4 and 5. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, or 10% ∗

levels.
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A2 Supplementary Figures

Figure S1: Fractured landholdings in Bangladesh compared to a corn field in the United
States

A. Corn Field in Iowa B. Median Command Area in Bangladesh

Notes: Panel A shows a satellite image from Iowa. The black boundary is a quarter-quarter section,
amounting to an approximately 40 acre corn field. Panel B shows the median command area — in terms of
average plot size — in our sample in Bangladesh. The plots in the command area are outlined in white.
The command area is 13 acres and has 56 plots that are cultivated by 18 different farmers. The black square
is 40 acres, the same size as the Iowa corn field in Panel A.

36



Figure S2: Effects on plot-level AWD usage
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Notes: The figure shows differences in plot-level uptake of AWD across treatments in year 1 (top panel)
and year 2 (bottom panel). Each farmer was asked about one random plot in the command area of the tube
well. The figure is constructed using results from a regression of a binary variable for uptake on the
treatments, upazila fixed effects, and the control variables, with standard errors clustered at the village
level. The graphs on the left show the average rate of usage in the control group (bottom bar) and the mean
in the control group plus the treatment effect from the regression in the other three rows. The right panel
shows the treatment effects from the regression (dots) along with the 95% confidence intervals (bands).
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Figure S3: Treatment effects on AWD usage separate by family ties with tube well owner
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Notes: The figure shows results from plot-level data pooled across the two years of the study. We
regressed a binary variable for using AWD on the treatment indicators, upazila fixed effects, a year
dummy, and the control variables. This regression was done separately for two subsamples of the data.
The top panel limits the data to the tube well owner and their immediate family (siblings, children,
parents). The top panel includes 1,207 observations. The bottom panel is for the other villagers that are not
the owner or their immediate family (N=3,818). All standard errors are clustered at the village level.
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A3 Benchmarking Cost Effectiveness with the Literature

Figure 3 in the main text compares cost effectiveness with estimates from various residen-
tial and industrial energy efficiency programs. Here we describe how information from
each paper was taken to produce the figure.

Fowlie, Greenstone, and Wolfram (2018): The note to Table 7 provides an average
retrofit cost of $4,585. The text on page 1624 gives the annual energy savings of
17 MMBtu per year. The lifespan of the investments is 16 years, meaning that the
intervention is expected to save a total of 272 mmBTU. This implies a cost of $16.86
per MMBtu.

Allcott and Rogers (2014): Table 7 shows cost-benefit calculations across 3 sites of
their study. The 3 cost effectiveness measures are 1.4, 1.79, and 1.35 cents per kwh.
The average of these 3 numbers is 1.51 cents / kwh. Standardizing units gives $4.43
per mmBTU.

Allcott (2011): Cost effectiveness in this paper is measured as annualized cost of the
Home Energy Reports divided by kwh of electricity savings. The bottom of page
1088 gives 3.31 cents per kwh, which amounts to $9.7 per mmBTU.

List et al. (2017): Table 4 provides a cost effectiveness figure of 1.82 cents / kwh.
This equates to $5.33 per mmBTU.

Davis, Fuchs, and Gertler (2014): Table 6 gives a mean annual decrease in electricity
consumption from refrigerator replacement of 135 kwh per year = 0.46 mmBTU per
year. The bottom of Table 6 gives program costs of $0.25 per kwh. This works out to
$73.27 per mmBTU.

Ito (2015): The end of the introduction provides cost effectiveness figures. The study
took place in two sites: coastal areas and inland areas. Overall (across both areas)
the cost per kwh saved was 17.5 cents. This works out to $51.29 per mmBTU.

Christensen et al. (2021): Table 1 provides cost per home upgrade of $5312.62. The
energy savings from the intervention is 14.83% (Table 2). The average household
consumes 9.12 mmBTU per month in Table 1. This makes 16.23 mmBTU per year.
The text on page 27 indicates that the investments have a 20 year lifespan, meaning
that the program saves 324.4 mmBTU at a cost of $5312.62 (16.37 $/mmBTU).
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Allcott and Greenstone (2017): Table 5 shows daily gas reductions of 0.128 therms =
4.67 mmBTU per year. For electricity, the daily savings are 1.013 kwh = 1.26 mmBTU
per year. The total savings are therefore 5.93 mmBTU per year. The text on page 14
notes that 95% of investments have a 20 year lifespan. Thus, cumulative energy sav-
ings amount to 118.6 mmBTU. Table 7 gives program costs of $5.08 million. There
were 1,394 audited households, making average costs of $3644.19 per household.
The cost effectiveness figure is $30.73 per mmBTU.

Adhvaryu, Kala, and Nyshadham (2020): Table 7 gives cost-benefit calculations.
The cost per bulb is $8.53 and energy savings per bulb amount to 18 kwh per year.
We assume an 8-year measure lifespan for LEDs. This gives 144 kwh over the life of
the bulb. This works out to 5.92 cents per kwh = $17.36 per mmBTU.

Carranza and Meeks (2021): Table 6 shows overall energy savings of 444 kwh per
year, accounting for spillovers. The lifespan of a CFL bulb about one third that of
LEDs. We therefore assume a lifespan of 2.67 years, meaning total energy savings
of 1184 kwh. Table A13 shows program costs of $8.81 per household. Dividing the
two figures and converting units, we arrive at $2.18 per mmBTU.
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